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A video content representation framework is proposed in this
paper for extracting limited, but meaningful, information of video
data, directly from the MPEG compressed domain. A hierarchical
color and motion segmentation scheme is applied to each video shot,
transforming the frame-based representation to a feature-based one.
The scheme is based on a multiresolution implementation of the re-
cursive shortest spanning tree (RSST) algorithm. Then, all segment
features are gathered together using a fuzzy multidimensional his-
togram to reduce the possibility of classifying similar segments to
different classes. Extraction of several key frames is performed for
each shot in a content-based rate-sampling framework. Two ap-
proaches are examined for key frame extraction. The first is based
on examination of the temporal variation of the feature vector tra-
jectory; the second is based on minimization of a cross-correlation
criterion of the video frames. For efficient implementation of the
latter approach, a logarithmic search (along with a stochastic ver-
sion) and a genetic algorithm are proposed. Experimental results
are presented which illustrate the performance of the proposed
techniques, using synthetic and real life MPEG video sequences.
(© 1999 Academic Press

1. INTRODUCTION

The active research effort in this area has been reflected
many conferences and special issues of leading journals dec
cated to this topic [16, 37, 38]. In addition, several prototype
systems, such as QBIC [12], Virage [14], VisualSEEK [35],
Photobook [30], MARS [32], Netra [21], and VideoQ [4] have
already been developed and are now in the first stage of comme
cial exploitation for content-based image manipulation. How-
ever, these systems cannot be easily extended to handle vid
databases, since it is very inefficient and time consuming t
perform queries on every video frame. Storage requiremen
of digitized video information, even in compressed domain, ar
very large and present challenges to most multimedia servers.
make thinks worse, most video databases are often located
distributed platforms, imposing great transmission bandwidtt
requirements. For this reason, apart from developing appropr
ate congestion schemes or proposing algorithms for effectiv
network design through modeling of video sources [10], new
methods for efficient video content representation should als
be implemented.

In particular, a “preindexing” stage should be introduced, ex
tracting limited and meaningful information of the video content.
The objective is to divide a video sequence into separate repr
sentative shots and then to extract the most characteristic fram

Efficient access to video data located on distributed platforriey framepwithin the selected shots by means of a content

is a very hard task, mainly due to large bandwidth requiremer@sed sampling algorithm [33]. In this framework, instead of
imposed by the large amount of video information. Traditionallperforming a query on all available video frames, one can onl
video is represented by numerous consecutive frames, eac§@sider the selected ones. Video queries can thus be perform
which corresponds to a constant time interval. However, suchaster and more efficiently, since the redundant information is re
representation is not adequate for new emerging multimedia iﬁpted. Furthermore, key frame extraction also permits fast vide
plications, such as content-based indexing, retrieval, and vid¥@wsing and provides a powerful tool for video content sum-
browsing. Moreover, tools and algorithms for effective Organmarization and visualization. For example, it has been observe
zation and management of video archives are still limited. F#t[42] thata 30-min video stream consists of approximately 20(
this reason, the MPEG-4 standardization phase aims at effecf¥®ts- Consequently, using five key frames per shot, only 10C
audiovisual coding, giving a new dimension to creating, acce$yit of 45,000 frames are required to represent the video conter
ing and manipulating video content [25, 34]. Furthermore, the Some approaches [29, 41] are oriented to detecting sh
MPEG-7 standard aims at developing an integrated framewdikanges; they can, therefore, be used as the first stage of vid
for a multimedia content description interface [26], with the opdisualization algorithms. Video representation based on the e

jective to specify a set of descriptors that can be used to repredéaftion of frames at regular time instances has been proposed
various types of multimedia information [20, 31]. [23]. This algorithm exploits neither shot information nor frame

similarity. Consequently important shots of small duration may
have no representatives while shots of longer duration may &
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shot information and selecting one key frame for each shot has2. FEATURE-BASED VIDEO REPRESENTATION
been presented in [1, 36]. However, a single key frame cannot
provide sufficient information about the video content of a given A block diagram of the proposed architecture is illustrate:
shot, especially for shots of long duration. Recently some oth&rFig. 1, consisting of four modules: shot cut detection, vide
approaches dealing with construction of a compact image mggfiuence analysis, fuzzy classification, and key frame extre
or image mosaics have been described in [17, 40] In []_7] ;gn)n The first three modules which are described in this sectic
frames of a shot are aligned with respect to the dominant objetoduce a feature vector representation of the video sequer
while in [40], a panoramic view of the shot frames is displayed®y first segmenting it into distinct video shots and then applyin
Although such a representation can be very good for specifigage analysis techniques to the frames of each shot. Such ar
applications, it cannot be effectively implemented in real worléggsentation provides a more meaningful description of the vide
complex shots, where background/foreground changes or cdiantentand, therefore, key frame extraction can be implement
plicated camera effects may appear. A method for analyziftpre efficiently.
video and building a pictorial summary for visual representa-
tipr_l has b_een proposed ir_1 [42]. This wqu is congentrated ondi-  shot Detection
viding a video sequence into consecutive meaningful segments
(story units) and then constructing a video poster for each storySince a video sequence is a collection of different shots, ea
unit based on shot dominance, instead of extracting key fram@sWhich corresponds to a continuous action of a single can
Other approaches for content-based video indexing include @@ operation [41], a shot detection algorithm is first applied i
works reported in [5, 15, 28]. order to temporally segment the sequence into shots. Seve

In this paper, extraction of several key frames within a shatgorithms have been reported in the literature for shot chan:
is proposed for efficiently describing the shot content. Firgletection which deal with the detection of cut, fading, or dis
video frame-based representation is transformed into a featuelve changes, either in the compressed or the uncompres
based one, which is closer to the semantic characterizationdgfmain [29, 41]. In our approach the algorithm proposed in [41
the shot. This is accomplished by applying several image pféas been adopted for shot detection since it is based on the
cessing and analysis techniques, exploiting color and motig@efficients of the DCT transform of each frame. These coe
information, to each video frame. To reduce the required Co,{i\cients are directly available in the case of intracoded frame
putations and simultaneously exploit information existing ifl frames) of MPEG compressed video sequences, while fi
MPEG video databases, such as block color average and it intercoded ones (P and B frames), they can be estima
tion vectors, our analysis is performed directly on the MPE&Y the motion-compensated error with minimal decoding effor
compressed domain. In this way, decoding can be Omitted/(\ﬁoption of the above-described algorithm results in Slgnlfl
performed with minimal effort. Then, all the aforementione§ant reduction of the required computations, compared to oth
features are gathered together, using a fuzzy feature vector fJgorithms which require a full resolution search of the vide
mulation. Two approaches for key frame extraction are propos€@ta.
The first one is based on temporal variation of feature vectors,
while the second relies on minimization of a cross-correlation
criterion.

In order to present the two key frame extraction approaches
which constitute the main originality of the paper, we first in- - N
troduce, in Section 2, the feature-based video representation in Feature Based

MPEG Video Source

Video Representation

corporated in the proposed framework. The description of this

representation includes shot detection, video sequence analys — Shot Detection

(color and motion segmentation), and fuzzy feature vector for-

mulation. Then, in Section 3, the temporal variation approach y

for key frame extraction is presented, along with an example of Video Sequence S .
a synthetic video sequence that also demonstrates the prope Analysis = 2
ties of the proposed feature vector representation. The theoret I 2 =
ical analysis of the cross-correlation approach is included next Fuzzy Feature s

in Section 3, while its actual implementation is discussed in Vector Formulation

Section 4. In particular, a deterministic and a stochastic version - g

of a logarithmic search, as well as a genetic algorithm are pro- Shot changes | Feature Vectors

posed for efficient implementation of this approach. Finally, ex-

perimental results on video sequences are presented in Section Key-Frame Extraction Key Frames

demonstrating the performance of the proposed techniques, ana
Section 6 concludes the paper. FIG.1. Block diagram of the proposed architecture.
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2.2. Video Sequence Analysis ponents of all color segments are used for the construction of
color feature vector. In a similar way, the number, size, location

Once a video sequence is temporally partitioned into video . .
%q average motion vectors of all motion segments are used f

shots, the next step of the analysis is segmentation of each sﬁ% . .
) ; . . . € construction of a motion feature vector. These two vector
into semantically meaningful objects and extraction of essen-

tial information describing those objects. The goal of semanficc then combined as explained in the next section.
segmentation is to determine the presence of a set of regionsd. Color segmentation. The recursive shortest spanning
representing known objects with semantic meaning. This, howwee (RSST) [24] algorithm is our basis for color segmenta:
ever, is a difficult problem, since it involves a priori knowledgd¢ion of each frame in a given video shot. Despite its relative
about the objects to be detected (e.g., detection of human facashputational complexity, it is considered as one of the mos
and thus can only be solved for a limited range of applicatiggowerful tools for image segmentation, compared to other tect
contexts (e.g., videophone systems, news bulletins, etc.) [9, J8fues (including color clustering, pyramidal region growing,
In this paper, color and motion segmentation is applied to ta@d morphological watershed) [27].

image sequence representing each video shot. Although semarfhe flowchart of the algorithm is depicted in Fig. 2a. Initially
tic segmentation would be essential in a content-based retrieanlimagel of sizeMg x Ny pixels, is partitioned intdvlg x Ng
environment, color and motion segmentation provide a powerfidgions (segments) of size 1 pixel and links are generated for ¢
representation of video shots for the problem of key frame ef-connected region pairs. Each link is assigned a weight equal
traction. In the following, color and motion information is kepthe distance between the two respective regions, whichisin ge
distinct in order to provide a flexible video content representaral defined as the Euclidean distance between the average ca
tion, where each piece of information can be handled separatelymponents of the two regions, using a bias for merging sma
In particular, the number, size, location, and average color comegions. Using, for example, the RGB color space, a distanc

Produce image pyramid
1(0), 1(1), ... , I(L ).
Setk=L,, 1=1k)

Partition image [ in M (xN,
regions of size |

Initialize and sort link weights
for all 4-connected region
pairs

RSST Ititialization

RSST Initialization

/

RSST Iteration

Is termination
criterion reached? Yes

N
Y \_ SToP ) v ( stop )

Merge two closest regions. Split each boundary block
Calculate new region values into 4 smaller ones. Obtain
and size new region values from I(k-1)
Recalculate and sort new Calculate and sort new region
region link weights. Remove link weights.
duplicated links. Setk= k-1
I RSST Iteration

(a) (b)

FIG. 2. (a) Flowchart of the RSST; (b) flowchart of the proposed segmentation algorithm.
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measure between two adjacent regidhandY is defined as TABLE 1
Execution Times of the RSST and the Proposed Multiresolution
d(X,Y) = [(Rx — Ry)?+ (Gx — Gy)? RSST (M-RSST) for Various Image Sizes
Ax Ay Execution ti
(BB () recuton tme improvement
X Y Image size RSST M-RSST ratio
whereRyx, Gx, andByx respectively represent the averd®es, 176x 144 (QCIF) 5.65 0.13 43.46
and B values of all pixels inside regioK and Ay is the num- 352x 288 (CIF) 44.21 0.38 116.35
ber of pixels within the region. All link weights are then sorted20x 576 (PAL) 534.22 1.36 392.81

in ascending order, so that the least weighed link correspondg T esolution level for the M-RSST
to the two closest regions. The iteration phase of the RSSTgis g bl.ocks) in all cases.
theninitiated, where neighboring regions are recursively merged

by applying_ the following actions in each iteraFion: (i) the tW?eason the execution times of both algorithms for the image
closest regions are merged and the new region color com%)é_ 3 at different sizes are compared in Table 1. The execulti

nents and size are calculated; (ii) the new region link Wagrﬁ?nes have been obtained ugia C implementation on a Sun

from all neighboring regions are recalculated and sorted; apd. - -Station-20 system. It can be seen that the improvem

(iif) any duplicated links are removed. The iteration termmatek‘tio is heavily affected by the adopted image size and that t

whf—:-r;nezhetr the total r;]umbetr of rteg|(|)ns (t)r: theh I’T;(;I’]II“RU(;T] tlm -RSST is approximately 400 times faster than the RSST for
weight (distance) reaches a target value (threshold). A dista ical image size of 726 576 pixels.

threshold is in general preferable since it provides a result th Also, it is observed from Fig. 3¢ that very small segment

IS '_P::g)e(ggjt?;r?{img (I)TtigeeRCSOg'treigtﬁeavil dependent upon t annot be found by the algorithm at the initial (lowest) resolu
. : i > heavlly dep P |8n, and, since no segments are created or destroyed at e
choice of the sorting algorithm, which is certainly a bottlenec|

. - . : ration, these segments are also eliminated from all resol
of the algorithm. For this reason, a new multiresolution RS§H g

isp =3 (equivalent to

. . . . ion levels (Figs. 3b, e). For example, even if the target numb:
(M-RSST) approach is proposed, which recursively applies to'fasegments was higher than 5, some facial details would n

RSST algorithm on images of increasing resolution, as depim&%duce separate segments. The final segmentation result of

mots?soﬂog\ﬁ:gt e(i)fisFlgér?gr.nznelg?/Ui};haar?éjvtnggzg?ur;igr?(lzg\;g;M_RSST is thus different from that of the conventional RSST
P 9 P as far as small segments are concerned. However, such filter

?f Lonsfr thta t da fh'ri:?r:Chy t(r)f ;raT%S(i?T)] =11 (1r)’r.n'i(.j’ I\/\(/ilzﬁ) aﬁcording to object size is desirable in the context of key fran
IS co hs ucted, to ; gf?h u_ca} € fth alge pybal ,Th Resa lection, since it achieves a high level of video content repr
ayer having a quarter otine pixe's ot fhe fayer below. 'ne sentation. Thisisillustrated in Fig. 4, where alandscape image

:r:tcljatl;]Z;r:Igg ':f;krzfigr:ag: fi(r)1rstri]r?vlool\\//vi?15t trhejzgt'? Iimig‘iagr)m cgrrectly segmented into building, sea, or forest areas. Overse
) =gins, 9 >LEPS. () reg - ar{hentation is avoided and, thus, texture images can be handle
recursively merged using the RSST iteration phase; (ii) eac

boundary pixel of all resulting regions is split into four new re- T "2, it can be seen in Figs. 3¢, e that effectively only th

ons w)rqcf)se color com onegnts%re obtair?ed from the ima ese]gment contour shapes are affected at each iteration, since
9 ' . P . : 9¢ gments are created or destroyed. It is therefore possible to
the next higher resolution level; (iii) the new link weights arg

calculated and sorted. This “split-merge” procedure is repeat Lélire the exact contour shapes of the segments that are reta
' P ge’p PealEline highest resolution level (as in Fig. 3b). Moreover, this i

un?Lt:(raezll?l?sez]E trﬁzmlrj:ogsgaggga Isseremag:te;tion algorithm achieved without using the entire images of the truncated imal
depicted in Fig. 3 fgr :ftarget numbegr of segmentgs equalaggramid, but_only parts of thgm at the o_bject boun_daries. Th
5 and for an init.ial resolution levdly =3 (equivalent to 8« 8 nbe e>_<p|0|ted for segmenting frgme_s n MPEG video strear
blocks). After application of the RS§T iteration b8) (Fig. 3¢) by adopting block resolution for initialization of the algorithm.
' eh Ié\};this case, the truncated image pyramid is actually not co

e

;m%v?/?]ui?]dgiry p;:.)éelfhintaof;“mé]ob?rugfns;v ;egnn:se?é? ?ha(:? sfructed entirely. Instead, decoding of a very small percenta
. g. 50, i X gm blocks near object boundaries is performed in order to obta
RSST iteration at resolution level 2 is considerably reduce,

g .~ “thie required parts of the higher resolution images, resulting in
compared to the initial number of segments of the convention Fry fast implementation.

RSST algorithm at the same resolution level. The same applies
for the next level (Figs. 3e and f). Since the speed of the RSSTB. Motion segmentation.In order to solve the motion

depends heavily on the initial number of segments, it is clesegmentation problem, numerous different techniques can
that the proposed M-RSST approach yields much faster exeemployed, such as direct intensity-based methods, optical flo
tion, compared to RSST. The computational complexity of thesed methods, or simultaneous motion estimation and segm
M-RSST, however, is not straightforward to calculate, sincetition methods [39]. Each method has its own advantages a
depends on the number, shape, and size of segments. Fordfgadvantages, restricting its use to specific applications. F
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(© (d)

(e) ®

FIG. 3. Color segmentation: (a) initial image; (b) final segmentation; (c) segmentation at resolution level 3; (d) boundary pixels split at level 3;r{&tieegme
at level 2; and (f) boundary pixels split at level 2.

example, simultaneous motion estimation and segmentatiorHaving in mind the huge amount of computations involved
methods are unattractive due to their high computational co-the analysis of large video databases on the one hand, al
plexity, while directintensity-based methods cannot handle cathe limited requirements for accuracy in the problem of key
era noise and illumination changes. Optical flow methods ar@ame extraction on the other hand, we have chosen to e
quite popular and widely used both for video coding and imagpoit the motion vector information that is directly available in
analysis and understanding. MPEG streams, thus eliminating the need for motion analysi
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(e) ()

FIG.4. Color segmentation: (a) initialimage; (b) final segmentation (initial image shown inside segments); (c) segmentation at resolution levei8n{disag
at level 2; (e) segmentation at level 1; and (f) segmentation at level O (final).

altogether. Since no decoding is necessary, an extremely faspreserve object contours. Motion segmentation is performe
implementation is achieved. However, poor motion estimatbyg dividing each frame into regions of homogeneous motior
are obtained, since motion vectors of MPEG streams are u3ine proposed M-RSST algorithm described above is applied
ally very noisy. For this reason, a postprocessing step for spatla MPEG block resolution, and motion vector differences ar
filtering (smoothing) of motion vectors is necessary. A mediarsed instead of color differences for the evaluation of regic
filter is selected for this purpose due to its speed and its abiljstances.
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(a) (b)

FIG.5. Motion segmentation results (a) without and (b) with smoothing.

Figure 5illustrates the motion segmentation results of a frameln order to reduce the possibility of classifying two similar
extracted from a TV news program. It is clear from Fig. 5a thaegments to different classes, causing erroneous compariso
without motion vector smoothing, wrong segmentation resuldsdegree of membership is allocated to each class, resultir
are produced, even in a uniform and almost stationary badk-a fuzzy classification formulation [19]. In conventional his-
ground. On the contrary, only the actually moving objects ategrams, each sample—i.e., segment, in our case—may belo
extracted in the case of smoothed motion vectors, as showroimy to one histogram bin, so that two similar samples, locatec
Fig. 5b. say, in opposite sides of the boundary of two bins, are consic

ered to belong to different bins. Using fuzzy classification, eacl
sample is allowed to belong to several (or all) classes, but wit
2.3. Fuzzy Feature Vector Formulation different degrees of membership. Therefore, in the previous e

All features extracted by the video sequence analysis mod ple, the two S|m|Iaf samples would slightly dlﬁgr n the!r
(i.e., size, location, color, or motion of each segment) can garees of memb_ersh|p W'.th respect to the two adjacent bin
used to describe the visual content of each video frame. HoHZ2Y representation permits the user to perform more comple
ever, they are not directly included in a vector to be used for tHfil€"eS. such as seeking a blue aothehovarge object, which
purpose, since their size differs between frames. For examdiselocatem_earthe b_ottom of animage. . .

a frame consisting of 20 segments requires twice the number o{'et us first consider the simple case of a one-dimensiont

feature elements than does a frame consisting of 10 segmeﬁ@?ures' €.g., the area of an image segment, taking values i

Moreover, there can be absolutely no correspondence betw—aeqpmam' which, without loss of generality, is assumed to b

the elements of the feature vectors of two frames, making aRr 1]; i.e., featuresis normalized between 0 and 1. This domain
comparison between the vectors unfeasible. To overcome Itggart_ltloned,_ or quantized, iniQ classes by means @ mem-
problem, we classify color as well as motion segments into pra€'ShiP functiongia(s).n=1,2, ..., Q. Foragiven real value
determined classes, forming a multidimensional histogram. ?n“"(s) denote; the deQree of membershis of thenth class.
this framework, each feature vector element corresponds td A€ membership functiongn(s),n=1,2..... Q, take values

specific feature class (equivalent to a histogram bin) and cdﬂ-the range [0, 1], so that values p(s) near unity (zero) indi-

tains the number of segments that belong to this class. 888'5? that the degree of membership of featurethenth class

ment size is accounted for by assigning separate feature cIaé%gggh (low). The most common membership functions are th

for small and large segments: i.e., size is considered a segn”FERPQUIar ones, defined as

feature just like color or motion. For example, a large moving

segment is classified to a different feature class than a small | ) _ {1 — 2= Mal/w, |S— M| <w/2, @
moving segment. Although large objects might be considered 0, otherwise

more important than small ones, the above approach ensures

that all information is kept separate and that, in a content-bafedn=1, 2, ..., Q, wherew is the width of each triangle base
retrieval environment, the degree of importance of each featuedm, = (n — 1)/(Q — 1) is the center of each triangle, so that
can be specified by the end user, possibly by assigning weigiits=0 andmg =1. An example of fuzzy classification using
to feature vector elements [8]. Q =5 triangular membership functions of width=2/(Q — 1)
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Membership §
Functions

1

#y(x) #y(x) #(x) u(x) Us(x)

>
0 m, m, m, 1 x (Feature Value)

FIG. 6. Example of one-dimensional fuzzy classification using five triangular membership functions with 50% overlap between successive partitior

is depicted in Fig. 6. It can be seen that widthcontrols the of the segment center; thex31 vectorc includes the average
overlap between successive partitions, indicating how vague tredues of the color components of the color segment, while tt
classification is, and in this case 50% overlap is used. The &x 1 vectorv includes the average motion vector of the motior
act shape and the overlap percentage of functigifs) can be segment. Thug,® = 6 for color segments arld™ = 5 for motion
greatly varied [19]. However, according to experimental resultsggments. For the sake of notational simplicity, the superscriy
the effect of the membership function shape on key frame extracand m will be omitted in the sequel; each color or motion
tion is minimal (except for cases of synthetic video sequencesgment will be denoted &and will be described by thie x 1

as explained in Subsection 3.1); therefore triangular functiomwsctors;, whereL =5 orL = 6, depending on the segment type.
have been selected mainly due to the very simple calculationsAccording to the above, let us denote By=[S 1S2- -

involved. s..]T.i=12, ..., K, the vector describing the (color or mo-
Using this partition or quantization scheme, a fuzzy histogration) segmeng§, whereK is the total number of segments. The
can be constructed from a large number of feature samptismain of each elemest;, j =1,2,..., L, of vectors is then
s,i=1,..., K, each of which corresponds to an image segartitioned intoQ regions by means @ membership functions
ment, whereK denotes the total number of segments. Then, the, (s.j). nj=1,2,..., Q. Asin the one-dimensional case, for
value of fuzzy histogram, sayi(n) corresponding to theth a given real value 0§ j, un,(s.j) denotes the degree of mem-
class is defined bership of elemers ; to the class with index; . Gathering class
< indicesn; for all eIemen;sj =12, ..., L, andL-dimensional
1 _ _ classn=[n; ny --- n_]' isdefined. Then, the degree of mem-
H(n) = K ; pa(s), n=12....Q ) bership of each vect® to classn can be performed through a

product of the membership functiops, (s, ) of all individual

We should note that the above definition reduces to the definitielementss j of s to the respective elements of n:

of conventional histograms if membership functions take binary .

values (0 or 1). Since, however, each sample value has nonzero (5) = 1—[ s 1) 5)

degree of membership to more than one class, the histogram can HnlS ] Hni{S.37-

be meaningful even when the number of samples is small. Fuzzy =

representation thus permits the construction of histograms frémorder for vectors to belong to class, all its elements

avery limited set of data. This is very important since the numbsghould belong to the respective classgs The membership

of segments in a frame, is typically much smaller than the functionsun, (s, ;) should thus be combined with the “AND”

total number of classes. operator, which is most commonly represented by multiplicatio
In the more general case of more than one segment featuieguzzy logic.

such as color, motion, and location, a multidimensional fea- A simple example of two-dimensional vectors is illustratec

ture vector is constructed for each segment. In particular, fiorFig. 7. Assume that a segme®is described here by vector

each color segmer,i=1,...,K, anL® x 1 vectors’ is s=[s1%]", andQ =2 membership functions:(s;) andu(s;)

formed, while for each motion segme§t, anL™ x 1 vector are used to quantize both elemesjtsj = 1, 2, ofs. Sincep1(s;)

§" is formed: is used to express “low” values gfandpu.,(s;j) to express “high”
values ofs;, we can denote classeg as “L” and “H” and
= [c"()IT(F)a(S)]" (4a) the two membership functions as (s;) anduu(s;). The two-

¥ =LHE)E) dimensional classes=[n; ny]" can then be denoted as “LL,”

g = [VT(SH)W(S“)a(S")]T, (4b) “LH,""HL.;”and“HH,” and the degree of membership of vecter

to clasais un(S) = wn, (S1)1n,(S2), Or, taking all combinations,

wherea denotes the size of the color or motion segment, landtLL (S) = uL(S1) wi(S2), men(s) = ui(sy) nn(s), waL(s) =
is a 2x 1 vector, indicating the horizontal and vertical locatiomt+(S1) £ (S2), andinn(s) = pn(S) 1H(S2)-
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51 A contrary, it results in a very large number of classes, leading t
“noisy” classification. Based on several experiments, we hav
1 concluded that a reasonable choice with respect to complexi
and effectiveness i = 3.

LH HH Global frame characteristics, obtained through global fram:
(5 py(sy) | pglsy) pglsy) analysis, could also be included as additional features in the fe.
ture vector, such as the color histogram of each frame or th
average texture complexity, estimated using the ac DCT coe
LL HL ficients of each block derived from the MPEG stream. More
segment properties could also be incorporated, such as contc
shapes or high order moments. The feature vector would be mug
0 > more representative of the frame content in this case, enablir

0 1 5 selection of those features that are considered as more import:

(8 (8,) | pgsy) i (sy)

) ) _— . __for key frame extraction or content-based retrieval. It should b
FIG.7. Example of two-dimensional fuzzy classification using two partitions . L
for each dimension. mentioned that the feature vector representation is independe

of the key frame selection algorithms described in the seque

so that any modification can be made without affecting the ke
It is now possible to construct a multidimensional fuzzy higrame selection module.

togram from the segment feature sammes=1, ..., K, ex-
actly as in the one-dimensional case. The value of the fuzzy 3. EXTRACTION OF KEY FRAMES
histogram,H (n), is defined similarly as the sum, over all seg-
ments, of the corresponding degrees of memberghig ): Once a feature-based representation of each frame is ava
able, a shot feature vector can be constructed, characterizil
1 K 1 K L a whole shot. One way of achieving this is by calculating the
H) = Y un(s) = K > 11w (6) average value of the frame feature vectors over the whole sh
i=1 i=1j=1 duration. This information can be exploited for extracting a se

) _ of representative shotkdy shotsusing a shot-clustering algo-
H(n) thus can be viewed as a degree of membership of a whelen similar to that described in [11]. Key frames can then be
frame fo class1. A frame feature vectof is then formed by ggjected from the key shots in order to provide a representatic
gathering values oH (n) for all classesy, i.e., for all combi- 4 54 wWhole video sequence. The rest of the paper concentrat
nations of indices, resulting in a total @f* feature elements: o, key frame extraction from a given shot. Two approaches ar
f=[f1 f, --- fqu]".Inparticular, anindex functionis definedy o ased for this purpose. The first exploits the temporal varia
which maps theQ" feature vector elements into an integer bejon, of the frame feature vectors, while the second is an optime

tween 1 andQ", solution, based on the minimization of a cross-correlation cri
L terion which ensures that the selected frames are not similar
2n) =1+ Z | QL. @) eaqh other. In the follovymg bqth methodologies are describec
=t while results are given in Section 5.
Then, the elements;,i =1, ..., Q%, of feature vectorf are 3.1. Temporal Variation Approach

calculated asf,n = H(n) for all classes. In fact, since the  Since every frame in a shot corresponds to a specific tim
above analysis was based on featsf@nds™ of color segments instance and is characterized by a specific feature vector, tt
S and motion segmeng&, respectively, two feature vectors will feature vectors of all frames in the shot form a trajectory, o
be calculated: a color feature vecférfor color segments and manifold, in a multidimensional space which expresses the ten
a motion feature vectdi™ for motion segments. Finally, basedporal variation of the frame feature vectors of the shot. There
on color and motion feature vectors, the feature vector, of lendtre, selection of the most representative frames within a shot
QY + QL", corresponding to the whole frame, is formed as equivalent to selection of the appropriate curve points which ar
able to characterize the corresponding trajectory. The select

f=[(fOT ™", (8) curve points should provide sufficient information about the tra

jectory curve shape, so that the shape can be reproduced usi

It should be noted that the dimension of the feature vefctorsome kind of interpolation. This can be achieved by extracting
and consequently, the computational complexity, increases éxe time instances, i.e., the frame numbers which reside in tt
ponentially with respect to the number of partitioqs, More-  extreme locations of this trajectory. The magnitude of the secon
over, a large number of partitions does not necessarily improgterivative of the feature vector with respect to time is used as
the effectiveness of the key frame extraction algorithm. On tl@rvature measure in this case. The second derivative expres:
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Feature Vector Trajectory Magnitude of Second Derivative vs. Time
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FIG. 8. (a) A continuous curve(t) = (x(t), y(t)), and (b) the magnitude of the second derivaidf¢) versust.

the degree of acceleration or deceleration of an object that tradggk), for thekth frame is defined in a similar way,
outthe feature trajectory. Since local maxima correspond to time

instances of peak variation of object velocity, while local minima 1=p2(K)
correspond to almost constant velocity, representative framesa@jék) = Z w|,k(d‘f(l +1)— d‘f(l)), k=0,...,Ns—3,
detected at those time instances. For example, suppose that we I=az(K)
have a two-dimensional feature vector whose trajectory is illus- (10)

trated in Fig. 8 as a continuous curvg) = (x(t), y(t)). Then

the local maxima and minima of the magnitude of the secomherea;(k) = min(0, k — N,,), B2(k) = min(Ns — 3, k + N,,),
derivative D(t), shown as small circles in Figs. 8a, b, providandw,, | € {—N,, N,}, equal the previous weights, assuming
sufficient information about the curve shape, since it can be that the same window type is used for the first and second wi

produced using some kind of interpolation. dowed derivative.

Let us first assume that a video shot consisting\Ngfim- The elements of the second windowed derivatil(k), ex-
ages frames has been selected. Let us also dendfie)ads = press the variation of the elementsf(i) with respect to time.
0,..., Ns — 1, the feature vector of thkth frame, as defined Thus, in order to take into consideration the variation of all el

in Eq. (8). The first derivative of(k) with respect tk is esti- ements off(k), the magnitude of the derivative(k) = |d4 (k)|
mated, in discrete time, as the difference between two successiveomputed. The time instances corresponding to local maxin
frames, i.e.di(k) =f(k+ 1) — f(k), ke {0, ..., Ns—2}. How- and minima ofD(k) are then detected as the key frame tim
ever, this operation is rather sensitive to noise, since differanstances. Note thaD (k) is a discrete time sequence here, ir
tiation of a signal amplifies its high-pass components. Thuscantrast withD(t) of Fig. 8, which is a continuous curve.
weighted average of the first derivative is used over a window To demonstrate the temporal variation method, an example
of predefined length to eliminate the noise influence, generatiagynthetic video shot is examined below. The shot consists

the first windowed derivativey (k), Ns =100 video frames of size 256256 pixels and depicts a
solid black circle of radius 25 pixels, following a vertical elliptic
I=p1(K) I=p1(K) trajectory in a static background. Figure 9a illustrates the vide
d¥' (k) = Z wi_kd1(l) = Z wi_(f(1 + 1) — (1)), shot, by presentating 20 of its frames, whose time instanc
| =z (K) | =z (K) are uniformly distributed between 1 and 100. As is observe
k=0,...,Ns—2, (9 the ball traces the elliptic trajectory twice. Let us take into ac

count only color frame features; i.e., let the feature vector equ

f(k) =1 ¢(k), Two partitions (classes) are defined for each featu!
where «1(k) =max(Q k — N,), (k) =min(Ns — 2, k+ N,), (Q=2), resulting in a feature vector length i =26 —64.
and 2« N,, + 1 is the length of the window, centered at framd@he partition indices in this case ampe {1, 2},i=1,...,6,
k. It can been seen from Eq. (9) that the window length lirwith n; = 1 representing a “low” value ang = 2 representing a
early reduces at shot limits. The weights are defined for “high”value forthei th feature. This interpretation of feature val-
I € {—N,, N, }; inthe simple case of a rectangular window, theyes as “low” and “high” is explained in the two-dimensional ex:
are all equal to A(2N,, + 1). The second windowed derivative,ample of Subsection 2.3. Two triangular membership functior
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FIG.9. Temporal variation approach example: (a) synthetic video sequence; (b) magnitude of second windowed ddigfdtiveersus the frame number, k.

ID(k)|

are used for each feature with 50% overlap. As observed ttlasses of the first group, whose index functiafn) has inte-
color feature vector varies, although the color components gér valuesir(l, ..., 8}, correspond to dark red, dark green, and
this sequence remain constant. This is due to the fact that theek blue color components (circle group). Similarly, clagses
color feature vectof,°(k), also contains geometric properties 0bf the second group witi(n) in {25, . . ., 32} correspond to dark
the color segments and, in particular, the horizontal and vertical, light green, and light blue color components (backgroun:
location of the segment centers. group). The background group remains static during the shc
Figure 9b depict® (k) for all shotframe& =0, ..., Ns—1= while the circle group changes, since both the horizontal an
99. Four local maxima and four local minima are present in thirtical location of the circle segment fluctuate. Even intege
figure, indicated as small circles. Local maxima correspond talues ofz(n) correspond to large segment size while old one:
frames where the circle reaches the outmost vertical positicc@respond to small segment size. As a result, the backgrout
(top and bottom of the image) while local minima correspongroup is characterized by zero values at odd indices, while th
to frames where the circle reaches the outmost horizontal mircle group is characterized by zero values at the even indice
sitions. Since the trajectory is traced twice, the first two local Figure 11 presents plots of feature elemefitsfs, and fs
maxima and minima correspond to the first period while thesrsus one another for the circle segment. These elements re
other two correspond to the second one. The time instancesmthe same classas, n,, n3, andng (i.e., R, G, B, and segment
local maxima and minima are selected as key frame instancgige), and differ only in classas, and ns (segment location
Only eight frames out of 100 are thus required to represent theand y). In particular, f; corresponds to “low and “low”
shot content. This leads to a 92% reduction of the storage se(LL), f3 to “low” x and “high”y (LH), and fs to “high” x
qguirements. Although the video information has been reducadd “low” y (HL), similarly to the two-dimensional example of
at the same ratio, the visual content of the sequence is retaisedbsection 2.3. In addition, Fig. 12 illustrates plots of specific
since the most representative frames are extracted. sums of two feature elementk (+ f3, f; + fs, andfz + fs) ver-
Figure 10 depicts the eight selected frames, together with thgs one another. Sinde refers to “low” y and f3 to “high” v,
64 feature elements &fk) corresponding to each key frame. Itisadding them actually removes the effect of vertical location
observed that two main groups of feature elements have nonzena thus the sunf; 4+ f3 refers to “low” x, independently of
values for each feature vector of this figure. The first group coy- Likewise, the sumf; + fs refers to “low” y independently
responds to the small black circle, while the second group carf-x. The locations of the selected key frames are also show
responds to the background area. In this example, class indiasssmall circles in these figures. In fact, these plots represe
n1, Ny, andnz correspond to R, G, and B color components, projections of the feature vector trajectory onto the subspac
andns correspond to horizontal and vertical segment location @lefined by the respective feature elements. It is observed the
andy, respectively), andg corresponds to segment size. Thusn all cases, the selected key frames reside near the extrer
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FIG. 10. Set of eight selected key frames from synthetic video sequence example, along with plots of the respective feature vectors.
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FIG. 11. Two-dimensional plots of all pair combinations of feature elemdnisfs, and f5, corresponding to specific combinations of horizontal and vertical
locations.

locations of the projected trajectory. A plot of particular interegéature elements do not obey a specific mathematical or physic
is that depicted in Fig. 12b, where in effect the horizontal locéaw. This behavior can be eliminated, even in the case of syr
tion of the circle is plotted versus the vertical location. In thithetic sequences, by the use of a slightly higher number (e.c
case, it is ascertained that the elliptic movement of the circle3sor 4) of membership functions. The use of nonlinear mem
extracted. bership functions, such as sigmoid or Gaussian, also helps
Frame extraction based on temporal feature vector variatitiis direction, since triangular functions may be nonlinear, bu
is an extremely fast and very straightforward algorithm since, @onsist of linear segments.
discrete time, the second derivative is implemented as a differ-
ence equation. In addition, the number of key frames for a stg)
is not required to be known a priori. Instead, it is estimated by
the feature vector trajectory. In cases where constant variation oAs demonstrated in the previous example, the temporal var
the feature vector is presented versus time, the second derivagitien approach has the ability of detecting several repetition
may not work well for detecting the representative frames ofd the content of a frame. This is useful for understanding the
shot. However, these are rare situations that might be prestow of action in a video shot. In cases, however, where tempc
only in synthetic video sequences; instead, in real world oneés| evolution of the shot is not of great interest, this approact

5. Cross-Correlation Approach
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FIG. 12. Two-dimensional plots of all pair combinations of sufst+ f3, f1+ fs, and f3+ fs.

does not provide a compact video content representation, sindadtt in most cases the numbégshould be approximately half of
contains redundant information. In such cases, which generailte key frames extracted by the temporal variation method. The
include complex shots of large duration, it is necessary to sel¢foe correlation coefficient of two feature vectdfis), f(l) is de-
a small number of frames that are representative of the shot diméd aspy| = Cx,/(okor), with k,1 €{0, ..., Ns— 1}, where
are not similar to each other. For this reason a key frame sel&- = (f(k) — m)" (f(1) — m) is the covariance of the two vectors
tion algorithm is introduced, based on an optimization methd¢k), f(l), while m = Zigglf(i )/Ns is the average feature vec-
for locating a set of minimally correlated feature vectors. Thisr of the shot andg? = C; ; is the respective variance. Without
is achieved by minimizing a cross-correlation criterion amorigss of generality, it is next assumed tiNg= 2", whereM is
the frames of a given shot. an integer number; i.e., the number of shot frames is a pow
Let us recall thaf(k) is the feature vector of thkth frame of 2. In case the actual number does not meet this constrai
of the shot under examination, wikke V. =1{0, 1, ..., Ns— 1}, extension of the shot is performed by adding dummy frame
whereNs is the total number of frames in the shot. Let us also d&a this case, correlation coefficients of dummy frames are set
note byK s the number of key frames that should be selected. Thidinity so that they cannot be selected as key frames.
number is either known a priori or it can be estimated by the tem-Based on the correlation coefficients between pairs of fe
poral variation algorithm, as was described in the previous subfe vectors, a measure of correlation amdtigfeature vec-
section. In particular, using several experiments it can be shotans can be defined. For this purpose, an index vector is defin
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first, until it reduces to a single point, which is selected as a solutio

of the optimization problem. Although a very small subset of

X= (Xt ..., Xx,) EWC V¥, (11) the search spad# is considered, the algorithm presents good

performance, since frames that are close to each other (in time

where usually have similar properties, and therefore, indices which ar
close to each other (iw) should have similar correlation mea-

sures.

An initial index vector, sayx(0) should be selected at the

i Ks ini i T . -
is the subset of ™ containing all sorted index VECtOXOITe- jpjialization of the algorithm. A common choice would be to
sponding to sets of frame numbers or time indices. The COMBzate the initial index vector at the middle PORE (14, - . ., ),

lﬁt'on mea?ure of the feature vectéfk), k=Xxi. ..., Xk,, CaN \ynare,, — 2M-1_ 1 js the central time instance of the shot for
then be defined as a shot lengthiNs = 2M. However, this point does not belong to

W:{(Xl,...,XKS)EVKS:X1<-~-<XKS} (12)

2 Ke—1 Ks spacal, since its elements do not satisfy the corresponding in
R(X) = R(X1, ..., Xk,) = = Z Z (pxi’xj)z, equality properties, as defined in Eq. (12). Hex(@ is selected
Ks(Ks = 1) &= j=i+1 as the element oV which is closest to the middle poiRf
13)

taking values in the real interval [0, 1]. Based on the above (fé(-o)z (o= 1Ks/2) oo p=Lopt Lot [Ks/2) (152)
finition, it is clear that searching for a set ldf minimally cor-

related feature vectors is equivalent to searching for an indéxXs is even and

vectorx that minimizesR(x). Searching is limited in the subset

W, since index vectors are used to construct sets of feature Ve@y) — (, — [Kqs/2),.... =L uot + 1, ..., + [Ks/2])
tors. Thus, any permutations of the elementg @fill result in (15b)
the same sets. It is clear that the correlation measure df the
features is independent of the feature arrangement. Finally, the
set of theKs least correlated feature vectors, corresponding HoKs is odd. Let us now assume that, at tith iteration of the

the Ks most characteristic frames, is represented by algorithm, anindex vectot(n) has been selected. The nextindex
vectorx(n + 1) is then obtained by evaluating the correlation
X =(X,...,%,) = arg m\j\pR(x). (14) measure of all neighbors &fn) in a region defined as
Xe

Unfortunately, the complexity of an exhaustive search for obN(x(n), §(n)) = {y € W :y = x(n) + s(n)p, p € GKS}, (16)
taining the minimum value oR(x) is such that a direct imple-

mentation of the method is practically unfeasible. For examplgy oreG — {—1,0, 1} ands(n) is an integer indicating the step

about 264 million combinations of frames should be considergf¢ of the neighborhood region. The above equation indicate
(each of which requiring several computations for estimatiqf4; the neighbors of(n) are located on the latti@®*s expanded

of R(x)) if we wish to select five representative frames out ofgy the step sizé(n). The step size is initialized #$0) = 212
shot consisting of 128 frames. For this purpose, two methods @i at the algorithm covers all possible points of the spsce

proposed next for efficient implementation of the optimizatiog,seq on the above, the actions that are repeated in each iterat
procedure: the logarithmic search and the genetic algorlthm.of the algorithm are (i) to select the neighbongh) with the

minimum correlation measure as the next index vextor- 1)

4. IMPLEMENTATION OF THE CROSS- and (ii) to divide the step size by two:

CORRELATION APPROACH

4.1. Logarithmic Search Algorithm x(n+1)= Xeﬁzxg(,gm)) RX) (172)
The first approach is based on a technique similar to the one 3(n+ 1) = §(n)/2. (17b)

used in MPEG standards for block motion estimation [39]. The

main difference is that it is implemented in the multidimensional The above steps are repeatediiee 0, 1, ..., M — 2, until

spaceW. In particular, instead of performing an exhaustivé(n) = 1. After M — 1 iterations the algorithm stops and the final
search over all indices &, a single path of points is followed, resultisk = x(M —1). This means that the time indices of g
beginning from a certain initial point. At each point of the pathkey frames of the shot are selected as the elements of the vec
only the set of its neighbors is examined, so that the next poi{tM — 1). Figure 13 depicts a graphical representation of the
in the path is selected toward the direction of the neighbor cailgorithm forKs =2 andNs = 16 (M = 4), where the horizontal
responding to the minimum cross-correlation measure. In eaaind vertical axes correspond to the two elementsndx,, of
iteration of the algorithm, the neighboring region is decreasék index vectox. The dark region includes index vectors that
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cardinality. Then, a probability value is assigned to egch
according to the respective correlation measure as

TR 1) R RN (18)

| >IN R(Y))

A cumulative probability function is then constructed for
allyi,i.e, g=>_pj,i=1...,IN|, withgo=0. Using a
given random numbetr, uniformly distributed in the range [0, 1],
the next index vectox,(n + 1) is chosen among the neighbors
yi as

b
Y | ve@aey
Q o

o SRR Xm(+1) = {yi € N(x(n), 8(0) 1 G 1 <7 <}, (19)

o
Nx(©.80)

S = N W A WU R 8 T

>

6 1 2 3 4 5 6 7 8 9 012 as The iteration is repeated=0, 1,..., M — 2, as in the case
5, —— of the logarithmic search algorithm, and the result of thié
experiment is the index vectéiy, =argmin_q _ y_1R(Xm(i))
FIG. 13. Graphical representation of the logarithmic search algorithm f@orresponding to the minimum correlation measure along tt
Ks=2 andNs=16 (M =4). The dark region indicates index vectors that dyath of the experiment. The final result is the index vector co
not belong to spacé. . . .
responding to the minimum correlation measure of all vectol
in all experiments. After] experiments, the optimal solution
do not belong to spad#’. The neighborhood area of each index =argmin,_; ;R(Xm) is selected, containing the indices of
vector is represented by a dotted rectangle, while the neighbtits K key frames.
insideW are shown as small circles. The stochastic version of the logarithmic search provides be
Although the proposed scheme significantly reduces ther results (see Section 5) than the logarithmic one, since diffe
required time for estimating key frames, it cannot concludeemtrandom paths are generated in each step of the algorithm. 1
different solution than that provided by the examined path. Cosearch spacé/ is thus explored in a more efficient way, since lo-
sequently, it is most frequently trapped in a local minimum afal minima ofR(x) cannot trap the algorithm. As the number of
R(x). To make the algorithm more flexible, a stochastic approaelRperiments increases, the number of examined points increa
is introduced in the following, providing the possibility of con-too; thus the solution obtained by the algorithm reaches the op
sidering more than one different paths. Experimental resulteal one. However, in this case the complexity increases as we
which indicate the performance of both algorithms, are given &s shown in the experimental results below. For this reason
Section 5. genetic algorithm is proposed in the following for efficient key
frame selection.
4.2. Stochastic Approach

The main difference of this algorithm is the introduction of 641"3' Genetic Algorithm

stochastic term in the selection of the next index vector in eachAs we have seen, the logarithmic search algorithm provide
iteration. Therefore Eq. (17a) is modified, based on a probabilisery fast convergence to a suboptimal solution of the correlatic
tic criterion, while the rest of the algorithm remains the sameinimization problem, with a significant possibility of converg-
The concept of this stochastic approach is to assign a probalyif to a local minimum oR(x). This drawback is alleviated by

ity to every neighbor point of the current examined poifrt), the use of its stochastic version at a higher computational co
i.e., every point belonging to the ski(x(n), 8(n)), and then to The idea of using a guided random search procedure can

select the next index vecta&(n + 1), using the assigned proba-further extended by employing an evolution program (EP) [22
bilities. These probabilities are inversely proportional to the réa contrast to enumerative search techniques, such as dynal
spective correlation measure. The search procedure is repeategramming, which may break down on complex problems ¢
several times, so that, in effect, multiple logarithmic search emoderate size, evolutionary programs provide unique flexibilit
periments take place in a random way. Due to the stochastic bad robustness on such problems. For this reason, a genetic
havior of the algorithm, different neighbors are selected in evegprithm (GA) [13] approach is adopted next. GAs are a speci
new experiment, resulting in the generation of several randarase of EPs, mainly used for discrete optimization problems. Tl

paths. approach seems to be very efficient for the particular optimiz:
Let us denote by, (n) the index vector at theth iteration step tion problem, given the size and dimensionality of the searc
for themth experiment, and by;,i=1, ..., |N|, its neighbors, space and the multimodal nature of the objective function. Th

i.e., the elements of séti(xy(n), §(n)), where|N]| is the set isevidentin Section 5, where experimental results are present
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Possible solutions of the optimization problem, i.e., sets ofrer operator The genetic material of the parents is combinec
frames, are represented by chromosomes whose genetic matarialrandom way in order to produce the genetic material of th
consists of frame numbers (indices). Chromosomes are thus reffspring. For example, for a single random crossover point a

resented by index vectoss= (X, ..., Xk.) € W following an positionc, two parents

integer numbeencoding schemehat is, using integer num-

bers for the representation of chromosome elements (genes) a= (al, a, ..., a, a1, ...,aKs),
X,i=1,..., Ks. The reason for selecting integer numbers (in-

stead of binary) representation is that all genetic operators, such b= (bl» b, ..., be, boya, .., bKS)

as crossover and mutation, should only be applied to genes

and not to arbitrary bits of their binary representation.iin WOuld generate the offspring

tial populationof P chromosomes(0)={X, ..., Xp} is then ,
generated by selecting sets of frames whose feature vectors d = (ag. @, ... 8 Do, ... bx,),
reside in extreme locations of the feature vector trajectory, as b = (bl, by, ..., be, ac1, '__’aKS),

described in the temporal variation approach. Since we do have
some knowledge aboutthe distribution oflocal optima, the abovep more general technique, employed in the context of this

approach exploits the temporal relation of feature vectors apgper, is theiniform crossovenwhere each parent gene is con-
increases the possibility of locating sets of feature vectors wigfjered to be a potential crossover point. This means that tw

small correlation within the first few GA cycles. parents
The correlation measug(x) is used as an objective function
to estimate the performance of all chromosomes =1, ..., ao=(adad....a%), a=(ala....a%)

P, in a given population. However,faness functioris used to
map objective values to fitness values, followingpak-based generate two offspring:
normalization schemén particular, chromosomes are ranked

in aspgnqlmg order oR(_xQ, since the objective function is to a, = (ail’ a2, ”_’aiK)’ a = (ai—sl’ a%‘SQ, L a]k—SK)’
be minimized. Letrank{) € {1, ..., P} be the rank of chromo-
somex;,i=1,..., P(rank=1correspondstothe bGStChromo\'/vhere Ks has been replaced ¢ for notational convenience

some and rank P to the worst). Defining an arbitrary fithes
value Fg for the best chromosome, the fitndséx;) of theith
chromosome is given by the linear function

Sands ,i=1,..., Kg, arerandom numbers taking values of 0 or
1 with equal probabilities, so that each component comes fror
the first or the second parent. Although single-point crossove
is considered to be inferior to other techniques, no evidence h:

F(xi) = Fg —[rank) —1]D, i=1,....,P,  (20) peen reported in favor of uniform, multipoint, or other types of
crossover operators (such asthmetical, segmentear shuf-
whereD is a decrement rate. The major advantage of the rarfle) [22]. Instead, this selection is heavily problem-dependent
based normalization is that, since fitness values are unifornalgd in our case, uniform crossover has exhibited slightly bette
distributed, it prevents the generation safper chromosomes performance in the experiments.

avoiding premature convergence to local minima. Furthermore,The next step is to appliyutationto the newly created chro-

by simply adjusting the two parametdfg andD, itis very easy mosomes, introducing random gene variations that are usef

to control theselective pressuref the algorithm, effectively for restoring lost genetic material, or for producing new ma-

influencing its convergence speed to a global minimum. terial that corresponds to new search aréasform mutation
After fitness valuesF(x),i =1, ..., P, have been calcu- is the most common mutation operator and is selected for ot

lated for all members of the current populatiparent selection optimization problem. In particular, each offspring geqes

is then applied so that a more fit chromosome gives a higheplaced by a randomly generated otie W, with probability

number of offspring and, thus, has a higher chance of surviyal,. That is, a random numbere [0, 1] is generated for each

in the next generation. Theulette wheel selectioprocedure gene and replacement takes plaaef py,; otherwise the gene

[22] is used for parent selection, by assigning each chromm@mains intact. Other alternatives, suchhasuniform, bound-

some a probability of selection proportional to its fitness valuessy, or swapoperators, are also possible. Nonuniform mutatior

exactly as in Eq. (19) for neighbor selection in the stochasiiin general preferable in numerical optimization problems with
logarithmic approach. The roulette wheel selection is one of thespect to accuracy and convergence speed, but does not achi
most popular methods, because it ensures that each chromosbetter performance in the problem under consideration.

has a growth rate proportional to its fithess value. Note also thatOnce new chromosomes have been generated for a given pc

due to rank-based normalization, selection probabilities remaitation X(n), n > 0, the next generation populatiod(n + 1),

constant between generations. is formed by inserting these new chromosomes o) and

A set of new chromosomes (offspring) is then produced laeleting an appropriate number of older chromosomes, so th
mating the selected parent chromosomes and applyimgss each population consists Bfmembers. The exact number of old
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chromosomes to be replaced by new ones defineeetilace- frame thumbnails. The results of the temporal variation approa
ment strategypf the GA and greatly affects its convergence raten this shot are presented in Fig. 15. In particular, Fig. 15a sho
An elitist strategy has been selected for replacement, wheréha magnitude of the second windowed derivatiizgk)|, versus
small percentage of the best chromosomes is copied into the frame numbek. The variation of D(k)| denotes that, due
succeeding generation, together with their offspring, improvirtg the complexity of the shot, the feature vector manifold is muc
the convergence speed of the algorithm [13]. Several GA anore complex than that of the synthetic example of Fig. 9b. Stil
cles take place by repeating the procedures of fitness evaluatitie,smoothness of the curve is maintained, due to the windowil
parent selection, crossover, and mutation, until the populatiprocedure described in Section 3; this ensures that local extre|
converges to an optimal solution. The GA terminates when tb&|D(k)|, shown with small circles in Fig. 15a, actually corre-
best chromosome fitness remains constant for a large numbesmdnd to variations of the shot content and not to segmentati
generations, indicating that further optimization is unlikely. noise. The seven selected frames are depicted in Fig. 15b. It ¢
be seen that these frames provide sufficient visualization of tl
5. EXPERIMENTAL RESULTS total 223 frames of the shot. Some of them, however, are simil
to each other (e.g., #30 and #55). For this reason, the remain
An MPEG video database consisting of real life video sémplementations of the cross-correlation approach are applie
quences is used in the following to test the performance of thensidering a smaller number of key frames; in particukay,
proposed algorithm. The database consists of video sequencds determined using the rule mentioned above. However, in tf
total duration about 3.5 h and includes several shots of news pspecific experimentKs =4 (slightly greater) was selected in
grams, films, commercials, sports, and cartoons. The sequer@@er to sufficiently describe the visual content of the shot.
have been encoded using the Optibase Fusion MPEG encoder dihe results of the cross-correlation approach are shown
a bitrate of 2 Mbits/s. The shot detection and feature extracti6ig. 16. In order to estimate the performance of the algorithms
algorithms have been applied offline to all sequences, so tkgiims of the obtained correlation measR(g), a test of 100,000
all information regarding the shot change instances, as wellrasdom index vectors is first performed, and a histograR(rf
the feature vector representation of all frames, is stored in tiseconstructed, as depicted in Fig. 16a. The optimal values
database and is readily available. Hence, the key frame extr&x) obtained through the three algorithms are then compar
tion algorithms are separately performed on each shot, usteghe minimum value of the histogram. In Fig. 16a, these value
directly the feature vectors of all frames within the respectiv&e shown with a vertical dashed line for the logarithmic searc
shot. The feature domains are partitionedder= 3 classes us- a vertical solid line for the stochastic version, and a vertical do
ing three triangular membership functions with 50% overlaggd line for the genetic algorithm. Itis first observed that all thre
so that the total feature vector length@-* + Q" =972 for algorithms return values that are lower than the minimum valt
L.=6andL,, =5, as mentioned in Section 2.3. The number dif the histogram. Second, it is clearly shown that the genet
key frames for the cross-correlation methods is determinedalgorithm provides much more accurate results. Actually, tf
the integer part of half the number obtained from the temporaiinimum value obtained through the genetic algorithm is muc
variation approach. This selection gives satisfactory resultslgwer than that of the random test, although the random test r
most cases, as mentioned in Subsection 3.2. quires about 100 times more computational time. Finally, it i
One shot of the database is used for demonstration of the gistrated that key frames are extracted, based on an object
formance of the proposed techniques. The shot, coming fronmamerical criterion, i.e., minimization of the cross correlatior
test drive sequence and consisting\af= 223 frames, is illus- function of frame feature vectors. Other criteria, which take ac
trated in Fig. 14. One every 10 frames is depicted, resulting in 28unt of human perception, can also be used to evaluate |

#0 #10 #20 #30 #060 #70

#110 #120 #130 #140 #150

S
#*
8

#160 #170 #180 #190 #200 #210 #220

FIG. 14. Test drive sequence, frames #0 to #220.
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Magnitude of Second Derivative vs. Frame No.

.ﬁ M

0 ISD 250
Frame Number, k

#30

#140 #162 #194

ID(k)I

#116

FIG. 15. Temporal variation approach on test drive sequence: (a) magnitude of second windowed deiv)yeversus the frame number, k, and (b) selected
frames.

performance of the proposed scheme. In this case, the extractuns, respectively. Although a very small percentage of frame
frames could be compared to those provided by several appsretained, it is clear that, in all cases, one can visualize th
priately selected humans to indicate which results are closerctintent of the shot by just examining the four selected frame:
human subjectivity. Consequently, the selected frames give a meaningful represe
Figure 16b shows the minimum, over the whole populatiotation of the content of the video shot. Although a comparisor
value of the correlation measure versus the cycle of the genedfcthe three algorithms is rather subjective, it can still be ar
algorithm. As expectedR(x) decreases as the GA cycle in-gued that key frames selected by the genetic algorithm are mo
creases, until it reaches a minimum at generation 40. Sincer@presentative of the shot than those of the other two algorithm
the specific experiment half chromosomes are replaced by nevFinally, the same experiments are repeated for all shots in tr
ones at each generation, there are cases where all generatedlatkbase, so as to obtain a reliable comparison between differe
spring have lower fitness than their parents. In these casesdpproaches. The temporal variation approach is first applied i
value of the correlation measure remains at the same level, header to estimate the number of key frames required, as well ¢
the “stepwise” appearance of the curve in the above figure. Ntite initial index vectors for the genetic algorithm. The cross-
that the step “width” increases with the GA cycle, since it isorrelation approach follows, witkds equal to half the number
directly related to the probability of further optimization. detected by the temporal variation approach. The average, ov
The four selected key frames of the given shot are shownat shots, correlation measurR, obtained by each method, is
Figs. 16c, d, e for the logarithmic, stochastic, and genetic algdisplayed in Table 2, together with the average computation:
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Histogram of Correlation Measure Convergenece of Genetic Algortihm
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#59 #95 #160 #171
(c) (Logarithmic)
#59 #141 #159 #177
(d) (Stochastic)

#118 #138 #160
(e) (Genetic)

#25

FIG. 16. Cross-correlation approach on test drive sequence: (a) histogram of correlation niR@a3uiegether with optimal values (dashed line, logarithmic;
solid, stochastic; dotted, genetic); (b) minimum valueRgk) versus cycle of genetic algorithm; (c) key frames (logarithmic); (d) key frames (stochastic); ¢

(e) key frames (genetic).

time, T. As a conclusion, the genetic algorithm outperforms 6. CONCLUSIONS

the other two methods in terms of both speed and accuracy of
results. Still, however, the temporal variation approach is veryIn this paper, an efficient video content representation h:
useful, mainly as a preprocessing tool for estimation of the sHmen presented for extracting a small but meaningful inform:

complexity. tion of video data. Our study has been concentrated on extracti
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TABLE 2 mentation and tracking so that meaningful entities of a videc
Results of Cross-Cor_reIationI Approach over All Shots of the frame can be extracted. Finally, an object graph can be inco
Database: Average Optimal Correlation Measure, R and Average  porated into the fuzzy classification so that the location and th

Computational Time, T, for Logarithmic, Stochastic, and Genetic relationship among different video objects are exploited.
Algorithms

: ) REFERENCES
Average correlation  Average computational
Method measureR time, T(s) 1. F. Arman, R. Depommier, A. Hsu, and M. Y. Chiu, Content-based browsinc

Logarithmic search 063 192 of V|dejo .sequences‘\CI\./I MultlmedlaAug. 1994, 77—.103. .
Stochastic logarithmic search 059 12.43 2. Y. Avrithis, A. Doulamis, N. Doulamis, and S. Kollias, An adaptive ap-
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1998
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