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A video content representation framework is proposed in this
paper for extracting limited, but meaningful, information of video
data, directly from the MPEG compressed domain. A hierarchical
color and motion segmentation scheme is applied to each video shot,
transforming the frame-based representation to a feature-based one.
The scheme is based on a multiresolution implementation of the re-
cursive shortest spanning tree (RSST) algorithm. Then, all segment
features are gathered together using a fuzzy multidimensional his-
togram to reduce the possibility of classifying similar segments to
different classes. Extraction of several key frames is performed for
each shot in a content-based rate-sampling framework. Two ap-
proaches are examined for key frame extraction. The first is based
on examination of the temporal variation of the feature vector tra-
jectory; the second is based on minimization of a cross-correlation
criterion of the video frames. For efficient implementation of the
latter approach, a logarithmic search (along with a stochastic ver-
sion) and a genetic algorithm are proposed. Experimental results
are presented which illustrate the performance of the proposed
techniques, using synthetic and real life MPEG video sequences.
c© 1999 Academic Press

1. INTRODUCTION

c

The active research effort in this area has been reflected in
many conferences and special issues of leading journals dedi-

pe
5],
ve
mer-
w-
video
g to
ents
are
s. To
d on

idth
pri-
tive
ew
also

ex-
nt.
pre-

ames
nt-
of
nly
rmed
re-

ideo
m-
rved
200
000
tent.
shot
video
ex-

ed in
e
ay

y be
Efficient access to video data located on distributed platfo
is a very hard task, mainly due to large bandwidth requireme
imposed by the large amount of video information. Traditiona
video is represented by numerous consecutive frames, ea
which corresponds to a constant time interval. However, su
representation is not adequate for new emerging multimedia
plications, such as content-based indexing, retrieval, and v
browsing. Moreover, tools and algorithms for effective orga
zation and management of video archives are still limited.
this reason, the MPEG-4 standardization phase aims at effe
audiovisual coding, giving a new dimension to creating, acce
ing and manipulating video content [25, 34]. Furthermore,
MPEG-7 standard aims at developing an integrated framew
for a multimedia content description interface [26], with the o
jective to specify a set of descriptors that can be used to repre
various types of multimedia information [20, 31].
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cated to this topic [16, 37, 38]. In addition, several prototy
systems, such as QBIC [12], Virage [14], VisualSEEK [3
Photobook [30], MARS [32], Netra [21], and VideoQ [4] ha
already been developed and are now in the first stage of com
cial exploitation for content-based image manipulation. Ho
ever, these systems cannot be easily extended to handle
databases, since it is very inefficient and time consumin
perform queries on every video frame. Storage requirem
of digitized video information, even in compressed domain,
very large and present challenges to most multimedia server
make thinks worse, most video databases are often locate
distributed platforms, imposing great transmission bandw
requirements. For this reason, apart from developing appro
ate congestion schemes or proposing algorithms for effec
network design through modeling of video sources [10], n
methods for efficient video content representation should
be implemented.

In particular, a “preindexing” stage should be introduced,
tracting limited and meaningful information of the video conte
The objective is to divide a video sequence into separate re
sentative shots and then to extract the most characteristic fr
(key frames) within the selected shots by means of a conte
based sampling algorithm [33]. In this framework, instead
performing a query on all available video frames, one can o
consider the selected ones. Video queries can thus be perfo
faster and more efficiently, since the redundant information is
jected. Furthermore, key frame extraction also permits fast v
browsing and provides a powerful tool for video content su
marization and visualization. For example, it has been obse
in [42] that a 30-min video stream consists of approximately
shots. Consequently, using five key frames per shot, only 1
out of 45,000 frames are required to represent the video con

Some approaches [29, 41] are oriented to detecting
changes; they can, therefore, be used as the first stage of
visualization algorithms. Video representation based on the
traction of frames at regular time instances has been propos
[23]. This algorithm exploits neither shot information nor fram
similarity. Consequently important shots of small duration m
have no representatives while shots of longer duration ma
represented by multiple frames with similar content. Exploit
1077-3142/99 $30.00
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shot information and selecting one key frame for each shot
been presented in [1, 36]. However, a single key frame can
provide sufficient information about the video content of a giv
shot, especially for shots of long duration. Recently some o
approaches dealing with construction of a compact image
or image mosaics have been described in [17, 40]. In [17]
frames of a shot are aligned with respect to the dominant ob
while in [40], a panoramic view of the shot frames is display
Although such a representation can be very good for spe
applications, it cannot be effectively implemented in real wo
complex shots, where background/foreground changes or c
plicated camera effects may appear. A method for analyz
video and building a pictorial summary for visual represen
tion has been proposed in [42]. This work is concentrated on
viding a video sequence into consecutive meaningful segm
(story units) and then constructing a video poster for each s
unit based on shot dominance, instead of extracting key fram
Other approaches for content-based video indexing include
works reported in [5, 15, 28].

In this paper, extraction of several key frames within a s
is proposed for efficiently describing the shot content. Fi
video frame-based representation is transformed into a fea
based one, which is closer to the semantic characterizatio
the shot. This is accomplished by applying several image
cessing and analysis techniques, exploiting color and mo
information, to each video frame. To reduce the required co
putations and simultaneously exploit information existing
MPEG video databases, such as block color average and
tion vectors, our analysis is performed directly on the MP
compressed domain. In this way, decoding can be omitte
performed with minimal effort. Then, all the aforemention
features are gathered together, using a fuzzy feature vecto
mulation. Two approaches for key frame extraction are propo
The first one is based on temporal variation of feature vect
while the second relies on minimization of a cross-correlat
criterion.

In order to present the two key frame extraction approac
which constitute the main originality of the paper, we first
troduce, in Section 2, the feature-based video representatio
corporated in the proposed framework. The description of
representation includes shot detection, video sequence ana
(color and motion segmentation), and fuzzy feature vector
mulation. Then, in Section 3, the temporal variation appro
for key frame extraction is presented, along with an exampl
a synthetic video sequence that also demonstrates the pr
ties of the proposed feature vector representation. The the
ical analysis of the cross-correlation approach is included n
in Section 3, while its actual implementation is discussed
Section 4. In particular, a deterministic and a stochastic ver
of a logarithmic search, as well as a genetic algorithm are
posed for efficient implementation of this approach. Finally,
perimental results on video sequences are presented in Sect

demonstrating the performance of the proposed techniques,
Section 6 concludes the paper.
ET AL.
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2. FEATURE-BASED VIDEO REPRESENTATION

A block diagram of the proposed architecture is illustra
in Fig. 1, consisting of four modules: shot cut detection, vid
sequence analysis, fuzzy classification, and key frame ex
tion. The first three modules which are described in this sec
produce a feature vector representation of the video sequ
by first segmenting it into distinct video shots and then apply
image analysis techniques to the frames of each shot. Such a
resentation provides a more meaningful description of the vi
content and, therefore, key frame extraction can be impleme
more efficiently.

2.1. Shot Detection

Since a video sequence is a collection of different shots, e
of which corresponds to a continuous action of a single ca
era operation [41], a shot detection algorithm is first applied
order to temporally segment the sequence into shots. Se
algorithms have been reported in the literature for shot cha
detection which deal with the detection of cut, fading, or d
solve changes, either in the compressed or the uncompre
domain [29, 41]. In our approach the algorithm proposed in [
has been adopted for shot detection since it is based on th
coefficients of the DCT transform of each frame. These co
ficients are directly available in the case of intracoded fram
(I frames) of MPEG compressed video sequences, while
the intercoded ones (P and B frames), they can be estim
by the motion-compensated error with minimal decoding eff
Adoption of the above-described algorithm results in sign
cant reduction of the required computations, compared to o
algorithms which require a full resolution search of the vid
data.
and
FIG. 1. Block diagram of the proposed architecture.
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OPTIMAL KEY FRAME EXTRAC

2.2. Video Sequence Analysis

Once a video sequence is temporally partitioned into vi
shots, the next step of the analysis is segmentation of each
into semantically meaningful objects and extraction of ess
tial information describing those objects. The goal of sema
segmentation is to determine the presence of a set of reg
representing known objects with semantic meaning. This, h
ever, is a difficult problem, since it involves a priori knowled
about the objects to be detected (e.g., detection of human f
and thus can only be solved for a limited range of applica
contexts (e.g., videophone systems, news bulletins, etc.) [9,
In this paper, color and motion segmentation is applied to
image sequence representing each video shot. Although se
tic segmentation would be essential in a content-based retr
environment, color and motion segmentation provide a powe
representation of video shots for the problem of key frame
traction. In the following, color and motion information is ke
distinct in order to provide a flexible video content represen

tion, where each piece of information can be handled separately.
In particular, the number, size, location, and average color com-

components of the two regions, using a bias for merging small
regions. Using, for example, the RGB color space, a distance
FIG. 2. (a) Flowchart of the RSST; (b) flow
ION FROM VIDEO DATABASES 5
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ponents of all color segments are used for the construction
color feature vector. In a similar way, the number, size, locat
and average motion vectors of all motion segments are use
the construction of a motion feature vector. These two vec
are then combined as explained in the next section.

A. Color segmentation. The recursive shortest spanni
tree (RSST) [24] algorithm is our basis for color segmen
tion of each frame in a given video shot. Despite its rela
computational complexity, it is considered as one of the m
powerful tools for image segmentation, compared to other t
niques (including color clustering, pyramidal region growi
and morphological watershed) [27].

The flowchart of the algorithm is depicted in Fig. 2a. Initia
an imageI of sizeM0 × N0 pixels, is partitioned intoM0× N0

regions (segments) of size 1 pixel and links are generated f
4-connected region pairs. Each link is assigned a weight equ
the distance between the two respective regions, which is in
eral defined as the Euclidean distance between the average
chart of the proposed segmentation algorithm.
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measure between two adjacent regionsX andY is defined as

d(X,Y) = [(RX − RY)2+ (GX − GY)2

+ (BX − BY)2]1/2 AX AY

AX + AY
, (1)

whereRX,GX, andBX respectively represent the averageR, G,
and B values of all pixels inside regionX and AX is the num-
ber of pixels within the region. All link weights are then sort
in ascending order, so that the least weighed link correspo
to the two closest regions. The iteration phase of the RSS
then initiated, where neighboring regions are recursively me
by applying the following actions in each iteration: (i) the tw
closest regions are merged and the new region color com
nents and size are calculated; (ii) the new region link weig
from all neighboring regions are recalculated and sorted;
(iii) any duplicated links are removed. The iteration termina
when either the total number of regions or the minimum l
weight (distance) reaches a target value (threshold). A dist
threshold is in general preferable since it provides a result
is independent of the image content.

The execution time of the RSST is heavily dependent upon
choice of the sorting algorithm, which is certainly a bottlene
of the algorithm. For this reason, a new multiresolution RS
(M-RSST) approach is proposed, which recursively applies
RSST algorithm on images of increasing resolution, as depi
in the flowchart of Fig. 2b. Initially a multiresolution decom
position of imageI is performed with a lowest resolution lev
of L0 so that a hierarchy of framesI (0)= I , I (1), . . . , I (L0)
is constructed, forming a truncated image pyramid, with e
layer having a quarter of the pixels of the layer below. The RS
initialization takes place for the lowest resolution imageI (L0)
and then an iteration begins, involving the steps: (i) regions
recursively merged using the RSST iteration phase; (ii) e
boundary pixel of all resulting regions is split into four new r
gions, whose color components are obtained from the imag
the next higher resolution level; (iii) the new link weights a
calculated and sorted. This “split-merge” procedure is repe
until the highest resolution imageI (0) is reached.

The results of the proposed color segmentation algorithm
depicted in Fig. 3 for a target number of segments equa
5 and for an initial resolution levelL0= 3 (equivalent to 8× 8
blocks). After application of the RSST iteration onI (3) (Fig. 3c),
the boundary pixels are split into four new segments each
shown in Fig. 3d, the total number of segments for the n
RSST iteration at resolution level 2 is considerably reduc
compared to the initial number of segments of the conventio
RSST algorithm at the same resolution level. The same ap
for the next level (Figs. 3e and f ). Since the speed of the R
depends heavily on the initial number of segments, it is c
that the proposed M-RSST approach yields much faster ex
tion, compared to RSST. The computational complexity of

M-RSST, however, is not straightforward to calculate, since
depends on the number, shape, and size of segments. For
ET AL.
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TABLE 1
Execution Times of the RSST and the Proposed Multiresolution

RSST (M-RSST) for Various Image Sizes

Execution time (s)
Improvement

Image size RSST M-RSST ratio

176× 144 (QCIF) 5.65 0.13 43.46
352× 288 (CIF) 44.21 0.38 116.35
720× 576 (PAL) 534.22 1.36 392.81

Note.The initial resolution level for the M-RSST isL0= 3 (equivalent to
8× 8 blocks) in all cases.

reason, the execution times of both algorithms for the imag
Fig. 3 at different sizes are compared in Table 1. The execu
times have been obtained using a C implementation on a Su
SparcStation-20 system. It can be seen that the improve
ratio is heavily affected by the adopted image size and tha
M-RSST is approximately 400 times faster than the RSST f
typical image size of 720× 576 pixels.

Also, it is observed from Fig. 3c that very small segme
cannot be found by the algorithm at the initial (lowest) reso
tion, and, since no segments are created or destroyed at
iteration, these segments are also eliminated from all res
tion levels (Figs. 3b, e). For example, even if the target num
of segments was higher than 5, some facial details would
produce separate segments. The final segmentation result
M-RSST is thus different from that of the conventional RSS
as far as small segments are concerned. However, such filt
according to object size is desirable in the context of key fra
selection, since it achieves a high level of video content re
sentation. This is illustrated in Fig. 4, where a landscape ima
correctly segmented into building, sea, or forest areas. Ove
mentation is avoided and, thus, texture images can be han

Finally, it can be seen in Figs. 3c, e that effectively only
segment contour shapes are affected at each iteration, sin
segments are created or destroyed. It is therefore possible
quire the exact contour shapes of the segments that are ret
at the highest resolution level (as in Fig. 3b). Moreover, thi
achieved without using the entire images of the truncated im
pyramid, but only parts of them at the object boundaries. T
can be exploited for segmenting frames in MPEG video stre
by adopting block resolution for initialization of the algorithm
In this case, the truncated image pyramid is actually not c
structed entirely. Instead, decoding of a very small percen
of blocks near object boundaries is performed in order to ob
the required parts of the higher resolution images, resulting
very fast implementation.

B. Motion segmentation. In order to solve the motion
segmentation problem, numerous different techniques ca
employed, such as direct intensity-based methods, optical fl
based methods, or simultaneous motion estimation and seg

it
this
tation methods [39]. Each method has its own advantages and
disadvantages, restricting its use to specific applications. For
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FIG. 3. Color segmentation: (a) initial image; (b) final segmentation; (c) segmentation at resolution level 3; (d) boundary pixels split at level 3; (e) segmentation
at level 2; and (f ) boundary pixels split at level 2.
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example, simultaneous motion estimation and segmenta
methods are unattractive due to their high computational c
plexity, while direct intensity-based methods cannot handle c
era noise and illumination changes. Optical flow methods

quite popular and widely used both for video coding and ima
analysis and understanding.
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m-
m-

are

Having in mind the huge amount of computations involv
in the analysis of large video databases on the one hand
the limited requirements for accuracy in the problem of k
frame extraction on the other hand, we have chosen to

geploit the motion vector information that is directly available in
MPEG streams, thus eliminating the need for motion analysis
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FIG. 4. Color segmentation: (a) initial image; (b) final segmentation (initial image shown inside segments); (c) segmentation at resolution level 3; (d) segmentation
at level 2; (e) segmentation at level 1; and (f ) segmentation at level 0 (final).
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altogether. Since no decoding is necessary, an extremely
implementation is achieved. However, poor motion estima
are obtained, since motion vectors of MPEG streams are
ally very noisy. For this reason, a postprocessing step for sp

filtering (smoothing) of motion vectors is necessary. A medi
filter is selected for this purpose due to its speed and its ab
fast
tes
su-
tial

to preserve object contours. Motion segmentation is perfor
by dividing each frame into regions of homogeneous mot
The proposed M-RSST algorithm described above is applie
the MPEG block resolution, and motion vector differences
an
ility
used instead of color differences for the evaluation of region
distances.
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FIG. 5. Motion segmentation res

Figure 5 illustrates the motion segmentation results of a fra
extracted from a TV news program. It is clear from Fig. 5a t
without motion vector smoothing, wrong segmentation res
are produced, even in a uniform and almost stationary ba
ground. On the contrary, only the actually moving objects
extracted in the case of smoothed motion vectors, as show
Fig. 5b.

2.3. Fuzzy Feature Vector Formulation

All features extracted by the video sequence analysis mo
(i.e., size, location, color, or motion of each segment) can
used to describe the visual content of each video frame. H
ever, they are not directly included in a vector to be used for
purpose, since their size differs between frames. For exam
a frame consisting of 20 segments requires twice the numb
feature elements than does a frame consisting of 10 segm
Moreover, there can be absolutely no correspondence betw
the elements of the feature vectors of two frames, making
comparison between the vectors unfeasible. To overcome
problem, we classify color as well as motion segments into p
determined classes, forming a multidimensional histogram
this framework, each feature vector element corresponds
specific feature class (equivalent to a histogram bin) and c
tains the number of segments that belong to this class.
ment size is accounted for by assigning separate feature cla
for small and large segments: i.e., size is considered a seg
feature just like color or motion. For example, a large mov
segment is classified to a different feature class than a s
moving segment. Although large objects might be conside
more important than small ones, the above approach ens
that all information is kept separate and that, in a content-ba
retrieval environment, the degree of importance of each fea
specified by the end user, possibly by assigning weig
re vector elements [8].
lts (a) without and (b) with smoothing.
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In order to reduce the possibility of classifying two simil
segments to different classes, causing erroneous compar
a degree of membership is allocated to each class, resu
in a fuzzy classification formulation [19]. In conventional h
tograms, each sample—i.e., segment, in our case—may be
only to one histogram bin, so that two similar samples, loca
say, in opposite sides of the boundary of two bins, are con
ered to belong to different bins. Using fuzzy classification, e
sample is allowed to belong to several (or all) classes, but
different degrees of membership. Therefore, in the previous
ample, the two similar samples would slightly differ in the
degrees of membership with respect to the two adjacent
Fuzzy representation permits the user to perform more com
queries, such as seeking a blue andsomehowlarge object, which
is locatednearthe bottom of an image.

Let us first consider the simple case of a one-dimensio
features, e.g., the area of an image segment, taking value
a domain, which, without loss of generality, is assumed to
[0, 1]; i.e., features is normalized between 0 and 1. This doma
is partitioned, or quantized, intoQ classes by means ofQ mem-
bership functionsµn(s), n= 1, 2, . . . , Q. For a given real value
s,µn(s) denotes the degree of membership ofs in thenth class.
The membership functionsµn(s), n= 1, 2, . . . , Q, take values
in the range [0, 1], so that values ofµn(s) near unity (zero) indi-
cate that the degree of membership of features in thenth class
is high (low). The most common membership functions are
triangular ones, defined as

µn(s) =
{1− 2|s−mn|/w, |s−mn| < w/2,

0, otherwise
(2)

for n= 1, 2, . . . , Q, wherew is the width of each triangle bas
andmn= (n− 1)/(Q− 1) is the center of each triangle, so th

htsm1= 0 andmQ= 1. An example of fuzzy classification using
Q= 5 triangular membership functions of widthw= 2/(Q− 1)
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FIG. 6. Example of one-dimensional fuzzy classification using five t

is depicted in Fig. 6. It can be seen that widthw controls the
overlap between successive partitions, indicating how vagu
classification is, and in this case 50% overlap is used. The
act shape and the overlap percentage of functionsµn(s) can be
greatly varied [19]. However, according to experimental resu
the effect of the membership function shape on key frame ex
tion is minimal (except for cases of synthetic video sequen
as explained in Subsection 3.1); therefore triangular funct
have been selected mainly due to the very simple calculat
involved.

Using this partition or quantization scheme, a fuzzy histog
can be constructed from a large number of feature sam
si , i = 1, . . . , K , each of which corresponds to an image s
ment, whereK denotes the total number of segments. Then,
value of fuzzy histogram, say,H (n) corresponding to thenth
class is defined

H (n) = 1

K

K∑
i=1

µn(si ), n = 1, 2, . . . , Q. (3)

We should note that the above definition reduces to the defin
of conventional histograms if membership functions take bin
values (0 or 1). Since, however, each sample value has non
degree of membership to more than one class, the histogram
be meaningful even when the number of samples is small. F
representation thus permits the construction of histograms
a very limited set of data. This is very important since the num
of segments in a frame,K , is typically much smaller than th
total number of classes.

In the more general case of more than one segment feat
such as color, motion, and location, a multidimensional f
ture vector is constructed for each segment. In particular,
each color segmentSc

i , i = 1, . . . , K , an Lc × 1 vectorsc
i is

formed, while for each motion segmentSm
i , an Lm× 1 vector

sm
i is formed:

sc
i =

[
cT
(
Sc

i

)
lT
(
Sc

i

)
a
(
Sc

i

)]T
(4a)

sm
i =

[
vT
(
Sm

i

)
lT
(
Sm

i

)
a
(
Sm

i

)]T
, (4b)
herea denotes the size of the color or motion segment, anl
a 2× 1 vector, indicating the horizontal and vertical locatio
iangular membership functions with 50% overlap between successive parti
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of the segment center; the 3× 1 vectorc includes the averag
values of the color components of the color segment, while
2× 1 vectorv includes the average motion vector of the mot
segment. Thus,Lc= 6 for color segments andLm= 5 for motion
segments. For the sake of notational simplicity, the supersc
c and m will be omitted in the sequel; each color or motio
segment will be denoted asSi and will be described by theL×1
vectorsi , whereL = 5 or L = 6, depending on the segment typ

According to the above, let us denote bysi = [si,1 si,2 · · ·
si,L ]T , i = 1, 2, . . . , K , the vector describing the (color or mo
tion) segmentSi , whereK is the total number of segments. Th
domain of each elementsi, j , j = 1, 2, . . . , L, of vectorsi is then
partitioned intoQ regions by means ofQ membership functions
µnj (si, j ), nj = 1, 2, . . . , Q. As in the one-dimensional case, f
a given real value ofsi, j , µnj (si, j ) denotes the degree of mem
bership of elementsi, j to the class with indexnj . Gathering class
indicesnj for all elementsj = 1, 2, . . . , L , andL-dimensional
classn= [n1 n2 · · · nL ]T is defined. Then, the degree of mem
bership of each vectorsi to classn can be performed through
product of the membership functionsµnj (si, j ) of all individual
elementssi, j of si to the respective elementsnj of n:

µn(si ) =
L∏

j=1

µnj (si, j ). (5)

In order for vectorsi to belong to classn, all its elementssi, j

should belong to the respective classesnj . The membership
functionsµnj (si, j ) should thus be combined with the “AND
operator, which is most commonly represented by multiplica
in fuzzy logic.

A simple example of two-dimensional vectors is illustrat
in Fig. 7. Assume that a segmentS is described here by vecto
s= [s1 s2]T , andQ= 2 membership functionsµ1(sj ) andµ2(sj )
are used to quantize both elementssj , j = 1, 2, ofs. Sinceµ1(sj )
is used to express “low” values ofsj andµ2(sj ) to express “high”
values ofsj , we can denote classesnj as “L” and “H” and
the two membership functions asµL(sj ) andµH(sj ). The two-
dimensional classesn= [n1 n2]T can then be denoted as “LL
“LH,” “HL,” and “HH,” and the degree of membership of vectors
to classn isµn(s) = µn1(s1)µn2(s2), or, taking all combinations
d
n

µLL (s) = µL(s1) µL(s2), µLH(s) = µL(s1) µH(s2), µHL(s) =
µH(s1)µL(s2), andµHH(s)=µH(s1)µH(s2).
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OPTIMAL KEY FRAME EXTRAC

FIG. 7. Example of two-dimensional fuzzy classification using two partitio
for each dimension.

It is now possible to construct a multidimensional fuzzy h
togram from the segment feature samplessi , i = 1, . . . , K , ex-
actly as in the one-dimensional case. The value of the fu
histogram,H (n), is defined similarly as the sum, over all se
ments, of the corresponding degrees of membershipµn(si ):

H (n) = 1

K

K∑
i=1

µn(si ) = 1

K

K∑
i=1

L∏
j=1

µnj (si, j ). (6)

H (n) thus can be viewed as a degree of membership of a w
frame to classn. A frame feature vectorf is then formed by
gathering values ofH (n) for all classesn, i.e., for all combi-
nations of indices, resulting in a total ofQL feature elements
f= [ f1 f2 · · · fQL ]T . In particular, an index function is define
which maps theQL feature vector elements into an integer b
tween 1 andQL ,

z(n) = 1+
L∑

j=1

nj Q
L− j . (7)

Then, the elementsfi , i = 1, . . . , QL , of feature vectorf are
calculated asfz(n)= H (n) for all classesn. In fact, since the
above analysis was based on featuressc

i andsm
i of color segments

Sc
i and motion segmentsSc

i , respectively, two feature vectors w
be calculated: a color feature vectorf c for color segments an
a motion feature vectorf m for motion segments. Finally, base
on color and motion feature vectors, the feature vector, of len
QLc + QLm

, corresponding to the whole frame, is formed as

f = [(f c)T (f m)T ]T . (8)

It should be noted that the dimension of the feature vectof,
and consequently, the computational complexity, increases
ponentially with respect to the number of partitions,Q. More-

over, a large number of partitions does not necessarily impr
the effectiveness of the key frame extraction algorithm. On
ION FROM VIDEO DATABASES 11
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contrary, it results in a very large number of classes, leadin
“noisy” classification. Based on several experiments, we h
concluded that a reasonable choice with respect to compl
and effectiveness isQ= 3.

Global frame characteristics, obtained through global fra
analysis, could also be included as additional features in the
ture vector, such as the color histogram of each frame o
average texture complexity, estimated using the ac DCT c
ficients of each block derived from the MPEG stream. M
segment properties could also be incorporated, such as co
shapes or high order moments. The feature vector would be m
more representative of the frame content in this case, ena
selection of those features that are considered as more imp
for key frame extraction or content-based retrieval. It should
mentioned that the feature vector representation is indepen
of the key frame selection algorithms described in the seq
so that any modification can be made without affecting the
frame selection module.

3. EXTRACTION OF KEY FRAMES

Once a feature-based representation of each frame is
able, a shot feature vector can be constructed, characte
a whole shot. One way of achieving this is by calculating
average value of the frame feature vectors over the whole
duration. This information can be exploited for extracting a
of representative shots (key shots) using a shot-clustering algo
rithm, similar to that described in [11]. Key frames can then
selected from the key shots in order to provide a represent
of a whole video sequence. The rest of the paper concen
on key frame extraction from a given shot. Two approaches
proposed for this purpose. The first exploits the temporal va
tion of the frame feature vectors, while the second is an opt
solution, based on the minimization of a cross-correlation
terion which ensures that the selected frames are not simi
each other. In the following both methodologies are descri
while results are given in Section 5.

3.1. Temporal Variation Approach

Since every frame in a shot corresponds to a specific
instance and is characterized by a specific feature vecto
feature vectors of all frames in the shot form a trajectory
manifold, in a multidimensional space which expresses the
poral variation of the frame feature vectors of the shot. Th
fore, selection of the most representative frames within a sh
equivalent to selection of the appropriate curve points which
able to characterize the corresponding trajectory. The sele
curve points should provide sufficient information about the
jectory curve shape, so that the shape can be reproduced
some kind of interpolation. This can be achieved by extrac
the time instances, i.e., the frame numbers which reside in
extreme locations of this trajectory. The magnitude of the sec
ove
the
derivative of the feature vector with respect to time is used as a
curvature measure in this case. The second derivative expresses
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FIG. 8. (a) A continuous curver (t)= (x(t), y(t)), and

the degree of acceleration or deceleration of an object that t
out the feature trajectory. Since local maxima correspond to
instances of peak variation of object velocity, while local mini
correspond to almost constant velocity, representative frame
detected at those time instances. For example, suppose th
have a two-dimensional feature vector whose trajectory is i
trated in Fig. 8 as a continuous curver (t)= (x(t), y(t)). Then
the local maxima and minima of the magnitude of the sec
derivativeD(t), shown as small circles in Figs. 8a, b, prov
sufficient information about the curve shape, since it can b
produced using some kind of interpolation.

Let us first assume that a video shot consisting ofNs im-
ages frames has been selected. Let us also denote asf(k), k =
0, . . . , Ns − 1, the feature vector of thekth frame, as define
in Eq. (8). The first derivative off(k) with respect tok is esti-
mated, in discrete time, as the difference between two succe
frames, i.e.,d1(k)= f(k+ 1)− f(k), k∈ {0, . . . , Ns− 2}. How-
ever, this operation is rather sensitive to noise, since diffe
tiation of a signal amplifies its high-pass components. Thu
weighted average of the first derivative is used over a win
of predefined length to eliminate the noise influence, genera
the first windowed derivativedw1 (k),

dw1 (k) =
l=β1(k)∑
l=α1(k)

wl−kd1(l ) =
l=β1(k)∑
l=α1(k)

wl−k(f(l + 1)− f(l )),

k = 0, . . . , Ns− 2, (9)

where α1(k)=max(0, k− Nw), β1(k)=min(Ns− 2, k+ Nw),
and 2∗ Nw + 1 is the length of the window, centered at fram
k. It can been seen from Eq. (9) that the window length
early reduces at shot limits. The weightswl are defined for
Nw}; in the simple case of a rectangular window, th
al to 1/(2Nw + 1). The second windowed derivative
(b) the magnitude of the second derivativeD(t) versust .
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dw2 (k), for thekth frame is defined in a similar way,

dw2 (k) =
l=β2(k)∑
l=α2(k)

wl−k
(
dw1 (l + 1)− dw1 (l )

)
, k = 0, . . . , Ns− 3,

(10)

whereα2(k) = min(0, k− Nw), β2(k) = min(Ns− 3, k+ Nw),
andwl , l ∈ {−Nw, Nw}, equal the previous weights, assumi
that the same window type is used for the first and second w
dowed derivative.

The elements of the second windowed derivative,dw2 (k), ex-
press the variation of the elements off(k) with respect to time.
Thus, in order to take into consideration the variation of all
ements off(k), the magnitude of the derivativeD(k)= |dw2 (k)|
is computed. The time instances corresponding to local max
and minima ofD(k) are then detected as the key frame tim
instances. Note thatD(k) is a discrete time sequence here,
contrast withD(t) of Fig. 8, which is a continuous curve.

To demonstrate the temporal variation method, an examp
a synthetic video shot is examined below. The shot consist
Ns= 100 video frames of size 256× 256 pixels and depicts a
solid black circle of radius 25 pixels, following a vertical ellipt
trajectory in a static background. Figure 9a illustrates the vi
shot, by presentating 20 of its frames, whose time instan
are uniformly distributed between 1 and 100. As is observ
the ball traces the elliptic trajectory twice. Let us take into
count only color frame features; i.e., let the feature vector eq
f(k)= f c(k), Two partitions (classes) are defined for each feat
(Q= 2), resulting in a feature vector length ofQLc = 26= 64.
The partition indices in this case areni ∈ {1, 2}, i = 1, . . . ,6,
with ni = 1 representing a “low” value andni = 2 representing a
“high” value for thei th feature. This interpretation of feature va
ey
,
ues as “low” and “high” is explained in the two-dimensional ex-
ample of Subsection 2.3. Two triangular membership functions
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FIG. 9. Temporal variation approach example: (a) synthetic video seque

are used for each feature with 50% overlap. As observed
color feature vector varies, although the color component
this sequence remain constant. This is due to the fact tha
color feature vector,f c(k), also contains geometric properties
the color segments and, in particular, the horizontal and ver
location of the segment centers.

Figure 9b depictsD(k) for all shot framesk= 0, . . . , Ns−1=
99. Four local maxima and four local minima are present in
figure, indicated as small circles. Local maxima correspon
frames where the circle reaches the outmost vertical posit
(top and bottom of the image) while local minima correspo
to frames where the circle reaches the outmost horizonta
sitions. Since the trajectory is traced twice, the first two lo
maxima and minima correspond to the first period while
other two correspond to the second one. The time instanc
local maxima and minima are selected as key frame instan
Only eight frames out of 100 are thus required to represen
shot content. This leads to a 92% reduction of the storage
quirements. Although the video information has been redu
at the same ratio, the visual content of the sequence is reta
since the most representative frames are extracted.

Figure 10 depicts the eight selected frames, together with
64 feature elements off(k) corresponding to each key frame. It
observed that two main groups of feature elements have non
values for each feature vector of this figure. The first group
responds to the small black circle, while the second group
responds to the background area. In this example, class in
n1, n2, andn3 correspond to R, G, and B color components,n4
andn5 correspond to horizontal and vertical segment locationx
andy, respectively), andn6 corresponds to segment size. Thu
ce; (b) magnitude of second windowed derivative,|D(k)|, versus the frame number, k
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classesn of the first group, whose index functionz(n) has inte-
ger values in{1, . . . ,8}, correspond to dark red, dark green, a
dark blue color components (circle group). Similarly, classen
of the second group withz(n) in {25, . . . ,32} correspond to dark
red, light green, and light blue color components (backgro
group). The background group remains static during the
while the circle group changes, since both the horizontal
vertical location of the circle segment fluctuate. Even inte
values ofz(n) correspond to large segment size while old o
correspond to small segment size. As a result, the backgr
group is characterized by zero values at odd indices, while
circle group is characterized by zero values at the even ind

Figure 11 presents plots of feature elementsf1, f3, and f5

versus one another for the circle segment. These elements
to the same classesn1, n2, n3, andn6 (i.e., R, G, B, and segmen
size), and differ only in classesn4 and n5 (segment location
x and y). In particular, f1 corresponds to “low”x and “low”
y (LL), f3 to “low” x and “high” y (LH), and f5 to “high” x
and “low” y (HL), similarly to the two-dimensional example o
Subsection 2.3. In addition, Fig. 12 illustrates plots of spec
sums of two feature elements (f1+ f3, f1+ f5, andf3+ f5) ver-
sus one another. Sincef1 refers to “low” y and f3 to “high” y,
adding them actually removes the effect of vertical locationy,
and thus the sumf1+ f3 refers to “low” x, independently of
y. Likewise, the sumf1+ f5 refers to “low” y independently
of x. The locations of the selected key frames are also sh
as small circles in these figures. In fact, these plots repre
projections of the feature vector trajectory onto the subsp

(
s,
defined by the respective feature elements. It is observed that,
in all cases, the selected key frames reside near the extreme
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FIG. 10. Set of eight selected key frames from synthetic video sequence example, along with plots of the respective feature vectors.
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FIG. 11. Two-dimensional plots of all pair combinations of feature elementsf1, f3, and f5, corresponding to specific combinations of horizontal and vertical
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locations of the projected trajectory. A plot of particular inter
is that depicted in Fig. 12b, where in effect the horizontal lo
tion of the circle is plotted versus the vertical location. In t
case, it is ascertained that the elliptic movement of the circ
extracted.

Frame extraction based on temporal feature vector varia
is an extremely fast and very straightforward algorithm since
discrete time, the second derivative is implemented as a di
ence equation. In addition, the number of key frames for a
is not required to be known a priori. Instead, it is estimated
the feature vector trajectory. In cases where constant variatio
the feature vector is presented versus time, the second deriv
may not work well for detecting the representative frames

shot. However, these are rare situations that might be pre
only in synthetic video sequences; instead, in real world on
st
a-
is
is

tion
, in
fer-
hot
by
n of
ative
f a

feature elements do not obey a specific mathematical or phy
law. This behavior can be eliminated, even in the case of
thetic sequences, by the use of a slightly higher number (
3 or 4) of membership functions. The use of nonlinear me
bership functions, such as sigmoid or Gaussian, also help
this direction, since triangular functions may be nonlinear,
consist of linear segments.

3.2. Cross-Correlation Approach

As demonstrated in the previous example, the temporal v
ation approach has the ability of detecting several repetit
of the content of a frame. This is useful for understanding
sent
es,
flow of action in a video shot. In cases, however, where tempo-
ral evolution of the shot is not of great interest, this approach
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FIG. 12. Two-dimensional plots of all pair co

does not provide a compact video content representation, sin
contains redundant information. In such cases, which gene
include complex shots of large duration, it is necessary to se
a small number of frames that are representative of the sho
are not similar to each other. For this reason a key frame s
tion algorithm is introduced, based on an optimization met
for locating a set of minimally correlated feature vectors. T
is achieved by minimizing a cross-correlation criterion amo
the frames of a given shot.

Let us recall thatf(k) is the feature vector of thekth frame
of the shot under examination, withk∈V ={0, 1, . . . , Ns− 1},
whereNs is the total number of frames in the shot. Let us also
note byKs the number of key frames that should be selected. T
number is either known a priori or it can be estimated by the t
ral variation algorithm, as was described in the previous s
tion. In particular, using several experiments it can be sho
mbinations of sumsf1+ f3, f1+ f5, and f3+ f5.

ce it
ally
lect
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that in most cases the numberKs should be approximately half o
the key frames extracted by the temporal variation method. T
the correlation coefficient of two feature vectorsf(k), f(l ) is de-
fined asρk,l =Ck,l/(σkσl ), with k, l ∈ {0, . . . , Ns− 1}, where
Ck,l = (f(k)−m)T (f(l )−m) is the covariance of the two vecto
f(k), f(l ), while m= ∑Ns−1

i=0 f(i )/Ns is the average feature ve
tor of the shot andσ 2

i =Ci,i is the respective variance. Witho
loss of generality, it is next assumed thatNs= 2M , whereM is
an integer number; i.e., the number of shot frames is a po
of 2. In case the actual number does not meet this constr
extension of the shot is performed by adding dummy fram
In this case, correlation coefficients of dummy frames are s
infinity so that they cannot be selected as key frames.

Based on the correlation coefficients between pairs of

ub-
wn
ture vectors, a measure of correlation amongKs feature vec-
tors can be defined. For this purpose, an index vector is defined
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OPTIMAL KEY FRAME EXTRAC

first,

x = (x1, . . . , xKs

)∈W⊂V Ks, (11)

where

W = {(x1, . . . , xKs

)∈V Ks : X1 < · · · < xKs

}
(12)

is the subset ofV Ks containing all sorted index vectorsx corre-
sponding to sets of frame numbers or time indices. The co
lation measure of the feature vectorsf(k), k= x1, . . . , xKs, can
then be defined as

R(x) = R
(
x1, . . . , xKs

) = 2

Ks(Ks − 1)

Ks−1∑
i=1

Ks∑
j=i+1

(
ρxi ,xj

)2
,

(13)

taking values in the real interval [0, 1]. Based on the above
finition, it is clear that searching for a set ofKs minimally cor-
related feature vectors is equivalent to searching for an in
vectorx that minimizesR(x). Searching is limited in the subs
W, since index vectors are used to construct sets of feature
tors. Thus, any permutations of the elements ofx will result in
the same sets. It is clear that the correlation measure of thKs

features is independent of the feature arrangement. Finally
set of theKs least correlated feature vectors, correspondin
the Ks most characteristic frames, is represented by

x̂ = (x̂1, . . . , x̂Ks

) = arg min
x∈W

R(x). (14)

Unfortunately, the complexity of an exhaustive search for
taining the minimum value ofR(x) is such that a direct imple
mentation of the method is practically unfeasible. For exam
about 264 million combinations of frames should be conside
(each of which requiring several computations for estima
of R(x)) if we wish to select five representative frames out o
shot consisting of 128 frames. For this purpose, two method
proposed next for efficient implementation of the optimizat
procedure: the logarithmic search and the genetic algorithm

4. IMPLEMENTATION OF THE CROSS-
CORRELATION APPROACH

4.1. Logarithmic Search Algorithm

The first approach is based on a technique similar to the
used in MPEG standards for block motion estimation [39]. T
main difference is that it is implemented in the multidimensio
spaceW. In particular, instead of performing an exhaust
search over all indices ofW, a single path of points is followed
beginning from a certain initial point. At each point of the pa
only the set of its neighbors is examined, so that the next p
in the path is selected toward the direction of the neighbor

responding to the minimum cross-correlation measure. In e
iteration of the algorithm, the neighboring region is decrea
TION FROM VIDEO DATABASES 17
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until it reduces to a single point, which is selected as a solu
of the optimization problem. Although a very small subset
the search spaceW is considered, the algorithm presents go
performance, since frames that are close to each other (in t
usually have similar properties, and therefore, indices which
close to each other (inW) should have similar correlation me
sures.

An initial index vector, say,x(0) should be selected at th
initialization of the algorithm. A common choice would be
locate the initial index vector at the middle pointx̃= (µ, . . . , µ),
whereµ= 2M−1− 1 is the central time instance of the shot f
a shot lengthNs= 2M . However, this point does not belong
spaceW, since its elements do not satisfy the corresponding
equality properties, as defined in Eq. (12). Hencex(0) is selected
as the element ofW which is closest to the middle pointx̃,

x(0)= (µ−bKs/2c, . . . , µ−1, µ+1, . . . , µ+bKs/2c) (15a)

if Ks is even and

x(0)= (µ− bKs/2c, . . . , µ− 1, µ, µ+ 1, . . . , µ+ bKs/2c)
(15b)

if Ks is odd. Let us now assume that, at thenth iteration of the
algorithm, an index vectorx(n) has been selected. The next ind
vectorx(n + 1) is then obtained by evaluating the correlati
measure of all neighbors ofx(n) in a region defined as

N(x(n), δ(n)) = {y ∈ W : y = x(n)+ δ(n)p, p ∈ GKs
}
, (16)

whereG={−1, 0, 1} andδ(n) is an integer indicating the ste
size of the neighborhood region. The above equation indic
that the neighbors ofx(n) are located on the latticeGKs expanded
by the step sizeδ(n). The step size is initialized asδ(0)= 2M−2

so that the algorithm covers all possible points of the spaceW.
Based on the above, the actions that are repeated in each ite
of the algorithm are (i) to select the neighbor ofx(n) with the
minimum correlation measure as the next index vectorx(n+ 1)
and (ii) to divide the step size by two:

x(n+ 1) = arg min
x∈N(x(n),δ(n))

R(x) (17a)

δ(n+ 1) = δ(n)/2. (17b)

The above steps are repeated forn= 0, 1, . . . ,M − 2, until
δ(n)= 1. After M−1 iterations the algorithm stops and the fin
result isx̂= x(M−1). This means that the time indices of theKs

key frames of the shot are selected as the elements of the v
x(M − 1). Figure 13 depicts a graphical representation of
algorithm forKs= 2 andNs= 16 (M = 4), where the horizonta
ach
sed

and vertical axes correspond to the two elements,x1 andx2, of
the index vectorx. The dark region includes index vectors that
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FIG. 13. Graphical representation of the logarithmic search algorithm
Ks= 2 andNs= 16 (M = 4). The dark region indicates index vectors that
not belong to spaceW.

do not belong to spaceW. The neighborhood area of each ind
vector is represented by a dotted rectangle, while the neigh
insideW are shown as small circles.

Although the proposed scheme significantly reduces
required time for estimating key frames, it cannot conclud
different solution than that provided by the examined path. C
sequently, it is most frequently trapped in a local minimum
R(x). To make the algorithm more flexible, a stochastic appro
is introduced in the following, providing the possibility of co
sidering more than one different paths. Experimental res
which indicate the performance of both algorithms, are give
Section 5.

4.2. Stochastic Approach

The main difference of this algorithm is the introduction o
stochastic term in the selection of the next index vector in e
iteration. Therefore Eq. (17a) is modified, based on a probab
tic criterion, while the rest of the algorithm remains the sam
The concept of this stochastic approach is to assign a prob
ity to every neighbor point of the current examined pointx(n),
i.e., every point belonging to the setN(x(n), δ(n)), and then to
select the next index vectorx(n+ 1), using the assigned prob
bilities. These probabilities are inversely proportional to the
spective correlation measure. The search procedure is rep
several times, so that, in effect, multiple logarithmic search
periments take place in a random way. Due to the stochasti
havior of the algorithm, different neighbors are selected in ev
new experiment, resulting in the generation of several ran
paths.

Let us denote byxm(n) the index vector at thenth iteration step

for themth experiment, and byyi , i= 1, . . . , |N|, its neighbors,
i.e., the elements of setN(xm(n), δ(n)), where|N| is the set
ET AL.
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cardinality. Then, a probability value is assigned to eachyi ,
according to the respective correlation measure as

pi = 1− R(yi )∑|N|
j=1R(y j )

, i = 1, . . . , |N|. (18)

A cumulative probability function is then constructed f
all yi , i.e., qi =

∑i
j=1 pj , i = 1, . . . , |N|, with q0= 0. Using a

given random numberr , uniformly distributed in the range [0, 1
the next index vectorxm(n+ 1) is chosen among the neighbo
yi as

xm(n+ 1)= {yi ∈ N(xm(n), δ(n)) : qi−1< r ≤qi
}
. (19)

The iteration is repeatedn = 0, 1, . . . ,M − 2, as in the case
of the logarithmic search algorithm, and the result of themth
experiment is the index vectorx̂m= arg mini=0,...,M−1R(xm(i ))
corresponding to the minimum correlation measure along
path of the experiment. The final result is the index vector c
responding to the minimum correlation measure of all vec
in all experiments. AfterJ experiments, the optimal solutio
x̂= arg minm=1...,J R(x̂m) is selected, containing the indices
the Ks key frames.

The stochastic version of the logarithmic search provides
ter results (see Section 5) than the logarithmic one, since di
ent random paths are generated in each step of the algorithm
search spaceW is thus explored in a more efficient way, since
cal minima ofR(x) cannot trap the algorithm. As the number
experiments increases, the number of examined points incre
too; thus the solution obtained by the algorithm reaches the
mal one. However, in this case the complexity increases as
as shown in the experimental results below. For this reaso
genetic algorithm is proposed in the following for efficient k
frame selection.

4.3. Genetic Algorithm

As we have seen, the logarithmic search algorithm prov
very fast convergence to a suboptimal solution of the correla
minimization problem, with a significant possibility of conver
ing to a local minimum ofR(x). This drawback is alleviated b
the use of its stochastic version at a higher computational
The idea of using a guided random search procedure ca
further extended by employing an evolution program (EP) [2
In contrast to enumerative search techniques, such as dyn
programming, which may break down on complex problem
moderate size, evolutionary programs provide unique flexib
and robustness on such problems. For this reason, a gene
gorithm (GA) [13] approach is adopted next. GAs are a spe
case of EPs, mainly used for discrete optimization problems.
approach seems to be very efficient for the particular optim
tion problem, given the size and dimensionality of the sea

space and the multimodal nature of the objective function. This
is evident in Section 5, where experimental results are presented.
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Possible solutions of the optimization problem, i.e., sets
frames, are represented by chromosomes whose genetic ma
consists of frame numbers (indices). Chromosomes are thus
resented by index vectorsx= (x1, . . . , xKs) ∈ W following an
integer numberencoding scheme, that is, using integer num
bers for the representation of chromosome elements (ge
xi , i = 1, . . . , Ks. The reason for selecting integer numbers (
stead of binary) representation is that all genetic operators,
as crossover and mutation, should only be applied to genexi ,
and not to arbitrary bits of their binary representation. Anini-
tial populationof P chromosomes,X(0)={x1, . . . , xP} is then
generated by selectingP sets of frames whose feature vecto
reside in extreme locations of the feature vector trajectory
described in the temporal variation approach. Since we do
some knowledge about the distribution of local optima, the ab
approach exploits the temporal relation of feature vectors
increases the possibility of locating sets of feature vectors
small correlation within the first few GA cycles.

The correlation measureR(x) is used as an objective functio
to estimate the performance of all chromosomesxi , i = 1, . . . ,
P, in a given population. However, afitness functionis used to
map objective values to fitness values, following arank-based
normalization scheme. In particular, chromosomesxi are ranked
in ascending order ofR(xi ), since the objective function is t
be minimized. Let rank(xi )∈ {1, . . . , P} be the rank of chromo
somexi , i = 1, . . . , P (rank= 1 corresponds to the best chrom
some and rank= P to the worst). Defining an arbitrary fitnes
valueFB for the best chromosome, the fitnessF(xi ) of the i th
chromosome is given by the linear function

F(xi ) = FB − [rank(xi )− 1]D, i = 1, . . . , P, (20)

whereD is a decrement rate. The major advantage of the ra
based normalization is that, since fitness values are unifo
distributed, it prevents the generation ofsuper chromosomes,
avoiding premature convergence to local minima. Furtherm
by simply adjusting the two parametersFB andD, it is very easy
to control theselective pressureof the algorithm, effectively
influencing its convergence speed to a global minimum.

After fitness values,F(xi ), i = 1, . . . , P, have been calcu
lated for all members of the current population,parent selection
is then applied so that a more fit chromosome gives a hig
number of offspring and, thus, has a higher chance of surv
in the next generation. Theroulette wheel selectionprocedure
[22] is used for parent selection, by assigning each chro
some a probability of selection proportional to its fitness valu
exactly as in Eq. (19) for neighbor selection in the stocha
logarithmic approach. The roulette wheel selection is one o
most popular methods, because it ensures that each chromo
has a growth rate proportional to its fitness value. Note also
due to rank-based normalization, selection probabilities rem
constant between generations.
A set of new chromosomes (offspring) is then produced
mating the selected parent chromosomes and applying across-
TION FROM VIDEO DATABASES 19
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over operator. The genetic material of the parents is combin
in a random way in order to produce the genetic material of
offspring. For example, for a single random crossover poin
positionc, two parents

a = (a1,a2, . . . ,ac,ac+1, . . . ,aKs

)
,

b = (b1, b2, . . . ,bc, bc+1, . . . ,bKs

)
would generate the offspring

a′ = (a1,a2, . . . ,ac, bc+1, . . . ,bKs

)
,

b′ = (b1, b2, . . . ,bc,ac+1, . . . ,aKs

)
.

A more general technique, employed in the context of t
paper, is theuniform crossover, where each parent gene is co
sidered to be a potential crossover point. This means that
parents

a0 =
(
a0

1,a
0
2, . . . ,a

0
K

)
, a1 =

(
a1

1,a
1
2, . . . ,a

1
K

)
generate two offspring:

a′0 =
(
as1

1 ,a
s2
2 , . . . ,a

sK
K

)
, a′1 =

(
a1−s1

1 ,a1−s2
2 , . . . ,a1−sK

K

)
,

whereKs has been replaced byK for notational convenience
andsi , i = 1, . . . , Ks, are random numbers taking values of 0
1 with equal probabilities, so that each component comes f
the first or the second parent. Although single-point crosso
is considered to be inferior to other techniques, no evidence
been reported in favor of uniform, multipoint, or other types
crossover operators (such asarithmetical, segmented, or shuf-
fle) [22]. Instead, this selection is heavily problem-depende
and in our case, uniform crossover has exhibited slightly be
performance in the experiments.

The next step is to applymutationto the newly created chro
mosomes, introducing random gene variations that are us
for restoring lost genetic material, or for producing new m
terial that corresponds to new search areas.Uniform mutation
is the most common mutation operator and is selected for
optimization problem. In particular, each offspring genexi is
replaced by a randomly generated onex′i ∈W, with probability
pm. That is, a random numberr ∈ [0, 1] is generated for each
gene and replacement takes place ifr < pm; otherwise the gene
remains intact. Other alternatives, such asnonuniform, bound-
ary, or swapoperators, are also possible. Nonuniform mutati
is in general preferable in numerical optimization problems w
respect to accuracy and convergence speed, but does not ac
better performance in the problem under consideration.

Once new chromosomes have been generated for a given
ulationX(n), n ≥ 0, the next generation population,X(n+ 1),
is formed by inserting these new chromosomes intoX(n) and

bydeleting an appropriate number of older chromosomes, so that
each population consists ofP members. The exact number of old
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chromosomes to be replaced by new ones defines thereplace-
ment strategyof the GA and greatly affects its convergence ra
An elitist strategy has been selected for replacement, whe
small percentage of the best chromosomes is copied into
succeeding generation, together with their offspring, improv
the convergence speed of the algorithm [13]. Several GA
cles take place by repeating the procedures of fitness evalua
parent selection, crossover, and mutation, until the popula
converges to an optimal solution. The GA terminates when
best chromosome fitness remains constant for a large numb
generations, indicating that further optimization is unlikely.

5. EXPERIMENTAL RESULTS

An MPEG video database consisting of real life video
quences is used in the following to test the performance of
proposed algorithm. The database consists of video sequen
total duration about 3.5 h and includes several shots of news
grams, films, commercials, sports, and cartoons. The seque
have been encoded using the Optibase Fusion MPEG enco
a bitrate of 2 Mbits/s. The shot detection and feature extrac
algorithms have been applied offline to all sequences, so
all information regarding the shot change instances, as we
the feature vector representation of all frames, is stored in
database and is readily available. Hence, the key frame ex
tion algorithms are separately performed on each shot, u
directly the feature vectors of all frames within the respec
shot. The feature domains are partitioned inQ= 3 classes us
ing three triangular membership functions with 50% overl
so that the total feature vector length isQLc + QLm = 972 for
Lc= 6 andLm= 5, as mentioned in Section 2.3. The numbe
key frames for the cross-correlation methods is determine
the integer part of half the number obtained from the temp
variation approach. This selection gives satisfactory result
most cases, as mentioned in Subsection 3.2.

One shot of the database is used for demonstration of the
formance of the proposed techniques. The shot, coming fro

test drive sequence and consisting ofNs= 223 frames, is illus-
trated

function of frame feature vectors. Other criteria, which take ac-
aluate the
in Fig. 14. One every 10 frames is depicted, resulting in 23count of human perception, can also be used to ev
FIG. 14. Test drive seq
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frame thumbnails. The results of the temporal variation appro
on this shot are presented in Fig. 15. In particular, Fig. 15a sh
the magnitude of the second windowed derivative,|D(k)|, versus
the frame number,k. The variation of|D(k)| denotes that, due
to the complexity of the shot, the feature vector manifold is mu
more complex than that of the synthetic example of Fig. 9b. S
the smoothness of the curve is maintained, due to the window
procedure described in Section 3; this ensures that local extr
of |D(k)|, shown with small circles in Fig. 15a, actually corr
spond to variations of the shot content and not to segmenta
noise. The seven selected frames are depicted in Fig. 15b. I
be seen that these frames provide sufficient visualization o
total 223 frames of the shot. Some of them, however, are sim
to each other (e.g., #30 and #55). For this reason, the rema
implementations of the cross-correlation approach are app
considering a smaller number of key frames; in particular,Ks

is determined using the rule mentioned above. However, in
specific experiment,Ks= 4 (slightly greater) was selected i
order to sufficiently describe the visual content of the shot.

The results of the cross-correlation approach are show
Fig. 16. In order to estimate the performance of the algorithm
terms of the obtained correlation measureR(x), a test of 100,000
random index vectors is first performed, and a histogram ofR(x)
is constructed, as depicted in Fig. 16a. The optimal value
R(x) obtained through the three algorithms are then compa
to the minimum value of the histogram. In Fig. 16a, these val
are shown with a vertical dashed line for the logarithmic sea
a vertical solid line for the stochastic version, and a vertical d
ted line for the genetic algorithm. It is first observed that all th
algorithms return values that are lower than the minimum va
of the histogram. Second, it is clearly shown that the gen
algorithm provides much more accurate results. Actually,
minimum value obtained through the genetic algorithm is mu
lower than that of the random test, although the random tes
quires about 100 times more computational time. Finally, i
illustrated that key frames are extracted, based on an obje
numerical criterion, i.e., minimization of the cross correlati
uence, frames #0 to #220.
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FIG. 15. Temporal variation approach on test drive sequence: (a) magnit
frames.

performance of the proposed scheme. In this case, the extr
frames could be compared to those provided by several ap
priately selected humans to indicate which results are clos
human subjectivity.

Figure 16b shows the minimum, over the whole populati
value of the correlation measure versus the cycle of the ge
algorithm. As expected,R(x) decreases as the GA cycle i
creases, until it reaches a minimum at generation 40. Sinc
the specific experiment half chromosomes are replaced by
ones at each generation, there are cases where all generat
spring have lower fitness than their parents. In these case
value of the correlation measure remains at the same level, h
the “stepwise” appearance of the curve in the above figure. N
that the step “width” increases with the GA cycle, since it
directly related to the probability of further optimization.
The four selected key frames of the given shot are show
Figs. 16c, d, e for the logarithmic, stochastic, and genetic a
de of second windowed derivative,|D(k)|, versus the frame number, k, and (b) selec

cted
pro-
r to

n,
etic
-
e in
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d off-
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rithms, respectively. Although a very small percentage of fram
is retained, it is clear that, in all cases, one can visualize
content of the shot by just examining the four selected fram
Consequently, the selected frames give a meaningful repre
tation of the content of the video shot. Although a compari
of the three algorithms is rather subjective, it can still be
gued that key frames selected by the genetic algorithm are m
representative of the shot than those of the other two algorith

Finally, the same experiments are repeated for all shots in
database, so as to obtain a reliable comparison between diff
approaches. The temporal variation approach is first applie
order to estimate the number of key frames required, as we
the initial index vectors for the genetic algorithm. The cro
correlation approach follows, withKs equal to half the numbe
detected by the temporal variation approach. The average,
n in
lgo-

all shots, correlation measure,̄R, obtained by each method, is
displayed in Table 2, together with the average computational



22 AVRITHIS ET AL.
FIG. 16. Cross-correlation approach on test drive sequence: (a) histogram of correlation measureR(x), together with optimal values (dashed line, logarithmic;
solid, stochastic; dotted, genetic); (b) minimum value ofR(x) versus cycle of genetic algorithm; (c) key frames (logarithmic); (d) key frames (stochastic); and

has
(e) key frames (genetic).

time, T̄ . As a conclusion, the genetic algorithm outperform
the other two methods in terms of both speed and accurac
results. Still, however, the temporal variation approach is v

useful, mainly as a preprocessing tool for estimation of the s
complexity.
s
y of
ery

6. CONCLUSIONS

In this paper, an efficient video content representation

hotbeen presented for extracting a small but meaningful informa-
tion of video data. Our study has been concentrated on extracting
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OPTIMAL KEY FRAME EXTRAC

TABLE 2
Results of Cross-Correlationl Approach over All Shots of the

Database: Average Optimal Correlation Measure, R-, and Average
Computational Time, T-, for Logarithmic, Stochastic, and Genetic
Algorithms

Average correlation Average computation
Method measure,̄R time, T̄(s)

Logarithmic search 0.63 1.92
Stochastic logarithmic search 0.59 12.43
Genetic algorithm 0.44 0.54

several characteristic frames for a given shot by applyin
content-based rate-sampling algorithm. To provide a more m
ingful description of the shot content, several features are
tracted first through a hierarchical color and motion segme
tion algorithm. Additional properties such as segment size
location are also included. All the above features are gath
using a fuzzy feature vector formulation, providing more fle
bility and simultaneously reducing the influence of segmenta
discontinuities. The whole procedure has been oriented to
ploit information that exists in MPEG video databases, so
to achieve fast implementation. In this case, many parame
used in the process such as the average block color and m
vectors are already precomputed.

For key frame extraction, temporal variation of the feature
jectory and minimization of a cross-correlation criterion ha
been proposed. The former technique is very fast and eas
implement; moreover, it provides satisfactory results in cas
collection of shot frames is periodically repeated. Instead,
latter one optimally selects the key frames for a given shot
cording to frame similarity. Since an exhaustive search for
optimal solution is practically unfeasible, a deterministic an
stochastic approach for logarithmic search, as well as a ge
algorithm have been proposed for implementation of the cro
correlation approach. Experimental results have been prese
indicating the good performance of the proposed architec
in real life video recordings. The genetic algorithm has be
shown to outperform the other two cross-correlation appro
implementations in terms of both speed and accuracy of res
while the temporal variation approach has been proved a p
erful preprocessing tool for estimation of shot complexity.

The proposed video representation provides a suffic
framework for many multimedia applications. Examples inclu
video content visualization and summarization, efficient m
agement of large video databases, content-based indexing
retrieval, fast video browsing and access to video archives,
finally, the automatic creation of video clip previews (tra
ers). Further improvement of the proposed techniques ca
achieved by applying more robust object segmentation a
rithms. In particular, integration of color, motion, as well
depth information in a common segmentation scheme in

proposed representation is currently under investigation. A
other objective is the implementation of semantic object se
ION FROM VIDEO DATABASES 23
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mentation and tracking so that meaningful entities of a vi
frame can be extracted. Finally, an object graph can be in
porated into the fuzzy classification so that the location and
relationship among different video objects are exploited.
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